PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size structure and body condition of Ponto-Caspian gammarids in the Vistula estuary (Poland)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over the past few decades, Ponto-Caspian gammarids Pontogammarus robustoides, Obesogammarus crassus and Dikerogammarus haemobaphes have colonized the European inland and coastal brackish waters. Previous experimental studies of P. robustoides, O. crassus and D. haemobaphes indicated that the salinity optimum for the species is about 7 PSU. We examined whether salinities below 5 PSU in the Vistula estuary – the Vistula Lagoon and the Vistula Delta, create a favorable environment and have a positive effect on Ponto-Caspian gammarids. The objective of this work was to determine the population parameters (size structure) and biological indicators (condition) of the studied gammarid species at a low salinity level. Length–weight relationships can be considered as their body condition in the environment. These relationships were calculated for each gammarid species according to the exponential equation y = axb, where: y – wet weight, x – total length, a – intercept, b – slope. The results clearly show responses of Ponto-Caspian gammarids to the low salinity habitat and indicate that such environment provides excellent conditions. The results of analysis show that the condition of gammarids is good. The optimal strategy of the examined alien gammarids may help them to maintain a strong competitive position in the environment and affect the colonization process in non-native waters with low salinity.
Rocznik
Strony
23--30
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
  • University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Department of Experimental Ecology of Marine Organisms, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
autor
  • University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Department of Experimental Ecology of Marine Organisms, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Maritime Institute in Gdańsk, Długi Targ 41/42, 22-100 Gdańsk, Poland
  • University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Department of Experimental Ecology of Marine Organisms, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
Bibliografia
  • [1]. Basset, A. & Glazier, D.S. (1995). Resource limitation and intraspecific patterns of weight- length variation among spring detrivores. Hydrobiologia 316: 127-137.
  • [2]. Basset, A. & Rossi, L. (1990). Competitive trophic niche modifications in three populations of detritivores. Functional Ecology 4: 685-693.
  • [3]. Bij de Vatte, A., Jazdzewski, K., Ketelaars, H., Gollasch, S. & Van der Velde, G. (2002). Geographical patterns in range extensions of macroinvertebrate Ponto-Caspian species in Europe. Can. J. Fish. Aquat. Sci 59: 1159-1174.
  • [4]. Bäthe, J. & Coring, E. (2011). Biological effects of antropogenic salt-load on the aquatic Fauna: A synthesis of 17 years of biological survey on the rivers Werra and Weser. Limnologica 41: 125-133.
  • [5]. Calow, P. & Forbes, V.E. (1998). How do physiological responses to stress translate into ecological and evolutionary process? Comparative Biochemistry and Physiology Part A 120: 11-16.
  • [6]. Carlton, J.T. (1985). Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water Oceanogr. Mar. Biol. Ann. Rev 23: 313-373.
  • [7]. Carlton, J.T. & Geller, J.B. (1993). Ecological roulette: the global transport of nonindigenous marine organisms. Science 261: 78-82.
  • [8]. Chubarenko, I. & Tchepikova, I. (2001). Modelling of man-made contribution to salinity increase into the Vistula Lagoon (Baltic Sea). Ecological Modelling 138: 87-100.
  • [9]. Dobrzycka-Krahel, A. & Surowiec, J. (2011). Osmoregulation of Pontogammarus robustoides (G.O.Sars) (Amphipoda) and its distribution in the brackish waters of northern Poland. Crustaceana 84: 1755-1767.
  • [10]. Dobrzycka-Krahel, A., Tarała, A. & Chabowska, A. (2013). Expansion of alien gammarids in the Vistula Lagoon and the Vistula Delta (Poland). Environ. Monit. Assess 185(6): 5165-5175. DOI: 10.1007/s10661-012-2933-1.
  • [11]. Dobrzycka-Krahel, A. & Graca, B. (2014). Laboratory study of the effect of salinity and ionic composition of water on the mortality and osmoregulation of the gammarid amphipod Dikerogammarus haemobaphes (Eichwald, 1841): implications for understanding its invasive distribution pattern. Mar. Freshwater Behav. Physiol 47(4): 227-238. DOI: 10.1080/10236244.2014.932141.
  • [12]. Dobrzycka-Krahel, A, Melzer, M. & Majkowski, W. (2015). Range extension of Dikerogammarus villosus (Sowinsky, 1894) in Poland (the Baltic Sea basin) and its ability to osmoregulate in different environmental salinities. Oceanological and Hydrobiological Studies 44(3): 294-304. DOI: 10.1515/ohs-2-15-0028.
  • [13]. Dobrzycka-Krahel, A., Majkowski, W. & Melzer, M. (2016). Length-weight relationships of Ponto-Caspian gammarids that have overcome the salinity barrier of the southern Baltic Sea coastal waters. Mar. Freshwater Behav. Physiol 49(6): 407-413. DOI: 10.1080/10236244.2016.1244948.
  • [14]. Dobrzycka-Krahel, A. & Graca, B. (2018). Effect of salinity on the distribution of Ponto- Caspian gammarids in a non- native area - environmental and experimental study. Marine Biology Research 14(2): 183-190. DOI: 10.1080/17451000.2017.1406666.
  • [15]. Dodd, J.A., Dick, J.T.A., Alexander, M.E., MacNeil, C., Dunn, A.M. et al. (2014). Predicting the ecological impacts of a new freshwater invader: functional responses and prey selectivity of the ‘killer shrimp’, Dikerogammarus villosus compared to the native Gammarus pulex. Freshwater Biology 59(2): 337-352.
  • [16]. Färber-Lorda, J. (1994). Length-weight relationships and coeffcient of condition of Euphausia superba and Thysanoessa macrura (Crustacea: Euphausiacea) in southwest Indian Ocean during summer. Marine Biology 118: 645-650.
  • [17]. Grabowska, J. & Grabowski, M. (2005). Diel-feeding activity in early summer of racer goby Neogobius gymnotrachelus (Gobbidea): a new invader in Baltic basin. J. Appl. Ichthyol 21: 282-286.
  • [18]. Grabowski, M., Konopacka, A., Jazdzewski, K. & Janowska, E. (2006). Invasions of alien gammarid species and retreat of natives in the Vistula Lagoon (Baltic Sea, Poland). Helgoland Marine Research 60(2): 90-97.
  • [19]. Grabowski, M, Bacela, K. & Konopacka, A. (2007). How to be an invasive gammarid (Amphipoda: Gammaroidea) - comparison of life history traits. Hydrobiologia 590: 75-84.
  • [20]. Grabowska, J, Grabowski, M. & Kostecka, A. (2009). Diet habits of monkey goby Neogobius fluviatilis in a newly invaded area. Biol. Inv 11: 2161-2170.
  • [21]. Grabowski, M, Bacela, K, Konopacka, A. & Jazdzewski, K. (2009). Salinity-related distribution of alien amphipods in rivers provides refugia for native species. Biol. Inv 11: 2107-2117.
  • [22]. Gross, L. (2006). Modeling alien invasions: plasticity may hold the key to prevention. PLOS Biology 4(11): 1888-1890.
  • [23]. Guerlet, E., Ledy, K. & Giamberini, L. (2008). Is the freshwater gammarid, Dikerogammarus villosus a suitable sentinel species for the implementation of histochemical biomarkers? Chemospere 72: 697-702.
  • [24]. Jakob, E.M., Marshall, S.D. & Uetz, G.W. (1996). Estimating fitness: a comparison of body condition indices. Oikos 77: 61-67.
  • [25]. Jacobsen, R. & Forbes, V.E. (1997). Clonal variation in life-history traits and feeding rates in the gastropod, Potamopyrgus antipodarum performance across a salinity gradient. Functional Ecology 11: 260-267.
  • [26]. Janas, U. (2005). Distribution and individual characteristics of the prawn Palaemon elegans (Crustacea, Decapoda) from the Gulf of Gdansk and the Dead Vistula River. Oceanological and Hydrobiological Studies 34(Supplement 1): 83-91.
  • [27]. Jazdzewski, K. & Konopacka, A. (2000). Immigration history and present distribution of alien crustaceans in Polish waters, Proc. 4th Int. Crustacean Cong., Brill, Leiden, Vol.2, J. C. von Vaupel Klein & F.R. Schram (Eds). Crustacea Iss 12: 55-64.
  • [28]. Jazdzewski, K., Konopacka, A. & Grabowski, M. (2002). Four Ponto-Caspian and one American gammarid species (Crustacea, Amphipoda) recently invading Polish waters. Contributions to Zoology 71: 115-122.
  • [29]. Jazdzewski, K., Konopacka, A. & Grabowski, M. (2004). Recent drastic changes in the gammarid fauna of the Vistula River deltaic system in Poland caused by alien invaders. Diversity & Distributions 10(2): 81-88.
  • [30]. Jermacz, Ł., Dzierzynska, A., Kakareko, T., Poznanska, M. & Kobak, J. (2015). The art of a choice: predation risk changes interspecific competition between freshwater amphipods. Behavioral Ecology 26(2): 656-664.
  • [31]. Kinzler, W., Kley, A., Mayer, G., Waloszek, D. & Maier, G. (2009). Mutual predation between and cannibalism within several freshwater gammarids: Dikerogammarus villosus versus one native and three invasive. Aquatic Ecology 43: 457.
  • [32]. Klekot, L. (1972). Bottom fauna of the Dead Vistula. Polskie Archiwum Hydrobiologii 19: 151-166.
  • [33]. Klekot, L. (1973). Martwa Wisła zbiornikiem słonawowodnym. Studia i Materiały Oceanologiczne 3: 159-162.
  • [34]. Konopacka, A. (2004). Inwazyjne skorupiaki obunogie (Crustacea, Amphipoda) w wodach Polski. Przeglad Zoologiczny 48(3-4): 141-162. (In Polish).
  • [35]. Launiainen, J. & Vihma, T. (1990). Meteorological, ice and water exchange conditions. Second periodic assessment of the state of the marine environment of the Baltic Sea, 1984-1988. Baltic Sea Environment Proceedings 35B: 22-23.
  • [36]. Leuven, R.S.E.W., Brock, T.C.M. & Druten, H.A. (1985). Effects of preservation on dry and ash free dry weight biomass of some common aquatic macroinvertebrates Hydrobiologia 127: 151-159.
  • [37]. Lindqvist, O.V. & Lathi, E. (1983). On the sexual dimorphism and condition index in the crayfish, Astacus astacus L., in Finland. Freshw. Crayfish 5: 3-11.
  • [38]. Malmberg, S.A. & Svansson, A. (1982). Variations in the physical marine environment in relation to climate. ICESCM 1982/ Gen: 4. Mini symposium.
  • [39]. Matthäus, W. & Schinke, H. (1994). Mean atmospheric circulation patterns associated with major Baltic inflows. Deutsche Hydrographische Zeitschrift 46: 321-339.
  • [40]. Miyasaka, H., Genkai-Kato, M., Miyake, Y., Kishi, D., Katano, I. et al. (2008). Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology 9: 75-80.
  • [41]. Mordukhaj-Boltovskoj, F.D., Greze I.I. & Vasilenko, S.V. (1969). Otrjad amfipody ili raznonogie - Amphipoda Latreille, 1816-1817. In V.A. Vodjanickij V.A. (Ed.), Opredelitel fauny Chernogo i Azovskogo morej. Izd. Naukova Dumka (pp. 440-524) Kiev. (In Russian).
  • [42]. Morris, D.J., Watkins, J., Ricketts, L.C., Buchholz, F. & Priddle, J. (1988). An assessment of the merits of length and weight measurements of Antarctic krill Euphausia superba. Br. Antarct. Surv. Bull 79: 27-50.
  • [43]. Nalepa, T.F., Hartson, D.J., Buchanan, J., Cavaletto, J.F., Lang, G.A. et al. (2000). Spatial variation in density, mean size and physiological condition of the Holarctic amphipod Diporeia spp. in Lake Michigan. Freshwater Biology 43: 107-119.
  • [44]. Panov, V., Alexandrov, B., Arbaciauskas, K., Binimelis, R., Copp, G.H. et al. (2009). Assessing the Risks of Aquatic Species Invasions via European Inland Waterways: From Concepts to Environmental Indicators. Integrated Environmental Assessment and Management 1: 110-126.
  • [45]. Pauly, D. (1979). Gill size and temperature as governing factors in fish growth: A generalization of Von Bertalanffy’s growth formula. Berichte Institut fur Meereskunde Universitat Kiel 63: 1-156.
  • [46]. Pauly, D. (2010). Gasping Fish and Panting Squids: Oxygen, Temperature and the Growth of Water-Breathing Animals International Ecology Institute. Oldendorf/Luhe, Germany.
  • [47]. Peacor, S.D., Allesina, S., Riol, R.L. & Pascual, M. (2006). Phenotypic plasticity opposes species invasions by altering fitness. PLOS Biology 4(11): 2112-2120.
  • [48]. Petruck, A. & Stöffer, U. (2011). On the history of chloride concentrations in the River Lippe (Germany) and the impact on the macroinvertebrates. Limnologica 41: 143-150.
  • [49]. Piscart, C., Kefford, B.J. & Beisel, J.N. (2011). Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica 41: 107-112.
  • [50]. Pruszak, Z., van Ninh, P., Szmytkiewicz, M., Manh Hung, N. & Ostrowski, R. (2005). Hydrology and morphology of two river mouth regions (temperate Vistula Delta and subtropical Red River Delta). Oceanologia 47(3): 365-385.
  • [51]. Rajasilta, M., Hänninen, J. & Vuorinen, I. (2014). Decreasing salinity improves the feeding conditions of the Baltic herring Clupea harengus membras during spring in the Bothnian Sea, northern Baltic. ICES Journal of Marine Science 1-5.
  • [52]. Rosati, I., Barbone, E. & Basset, A. (2012). Length-mass relationships for transitional water benthic macroinvertebrates in Mediterranean and Black Sea ecosystems. Estuarine, Coastal and Shelf Science 113: 231-239.
  • [53]. Siegel, V. (1982). Relationship of various length measurements of Euphausia superba Dana. Meeresforsch 29: 114-117.
  • [54]. Siegel, V. (1989). Winter and spring distribution and status of the krill stock in Antarctic peninsula waters. Arch. Fisch. Wiss 39: 45-72.
  • [55]. Sogard, S.M. (1992). Variability in growth rates of juveniles fishes in different estuarine habitats. Marine Ecology Progress Series 85: 35-53.
  • [56]. Wijnhoven, S., Van der Riel, M.C. & van der Velde, G. (2003). Exotic and indigenous freshwater gammarid species: physiology tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology 37: 151-158.
  • [57]. Vuorinen, I., Hänninen, J., Viitasalo, M., Helminen, U. & Kuosa, H. (1998). Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES Journal of Marine Science 55: 767-774.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77e82972-07f1-4196-86a0-76935c31a34d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.