Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Modelowanie tworzenia się struktury pierwotnej w cienkościennych odlewach z pod- i nadeutektycznego żeliwa z grafitem kulkowym metodą automatu komórkowego
Języki publikacji
Abstrakty
plications in critical engineering parts due to its mechanical properties and castablility. The mechanical and physical properties of this material depend on the shape and number of the graphite grains and microstructure of the metallic matrix. The purpose of the present work is a two-dimension model development for simulation of the DI structure formation during the solidification in the condition of non steady-state temperature and diffusion fields in the thin-wall casting. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. The Finite Element Method is used for the temperature field prediction in the casting wall. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, heterogeneous nature of kinetics of the austenite and the graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. The final simulated microstructure is compared with the real microstructure and are presented in Figure 1. Sequence of the simulation microstructure formation, for selected times, in hypoeutectic and hypereutectic DI is shown in Figure 2.
Żeliwo z grafitem kulkowym ze względu na jego właściwości mechaniczne i odlewnicze ma wiele zastosowań w odpowiedzialnych częściach maszyn. Właściwości mechaniczne i fizyczne tego materiału zależą od jego mikrostruktury, w szczególności od kształtu i liczby wydzieleń grafitu oraz od osnowy metalicznej. Proponowany w artykule model służy do symulacji tworzenia się mikrostruktury żeliwa sferoidalnego w przestrzeni dwuwymiarowej w warunkach niejednorodnego pola temperatury i stężenia domieszki, jakie panują na przykład w odlewach cienkościennych. Bazuje on na metodzie automatu komórkowego (AK) i metodzie różnic skończonych służącej do numerycznego rozwiązywania równań różniczkowych opisujących proces. Model został użyty do symulacji wzrostu pierwotnego austenitu i grafitu oraz ziaren eutektyki globularnej, jakie tworzą się podczas krystalizacji cienkościennych odlewów z żeliwa sferoidalnego. Model bierze pod uwagę niejednorodny rozkład temperatury w przekroju ścianki odlewu, zarodkowanie heterogeniczne zarówno ziaren austenitu, jak i grafitu oraz nierównowagowe warunki jakie panują na granicach międzyfazowych. Porównanie końcowej mikrostruktury uzyskanej w modelowaniu z rzeczywistą strukturą odlewu cienkościennego przedstawiono na rysunku 1. Sekwencja tworzenia się wir tualnej mikrostruktury w żeliwie pod- i nadeutektycznym dla wybranych momentów czasowych przedstawiono na rysunku 2.
Wydawca
Czasopismo
Rocznik
Tom
Strony
631--634
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering
Bibliografia
- [1] Stefanescu D. M., Catalina A., Guo X., Chuzhoy L., Pershing M. A., Biltgen G. L.: Prediction of room temperature mcrostructure and mechanical properties in iron castings. Modeling of Casting, Welding and Advanced Solidification Processes, ed. by B. G. Thomas, C. Beckermann, TMS, Warrendale (1998) 455÷462.
- [2] Yoo S. M., Ludwig A., Sahm P. R.: Numerical simulation of solidification of nodular cast iron in permanent molds. Solidification Processing (1997) ed. by J. Beech, H. Jones, Ranmoor House, Univ. of Sheffield (1997) 494÷497.
- [3] Chang S., Shangguan D., Stefanescu D.: Modelling of the liquid/solid and the eutectoid phase transformations in spheroidal graphite cast iron. Metal. Trans. A 23A (1992) 1333÷1346.
- [4] Skaland T., Grong O., Grong T.: A model for the graphite formation in ductile cast iron. II. Solid state transformation reactions. Metal. Trans. A 24A (1993) 2347÷2353.
- [5] Onsoien M., Grong O., Gundersen O., Skaland T.: A process model for the microstructure evolution in ductile cast iron. I. The model. Metal. Mat. Trans. A 30A (1999) 1053÷1068.
- [6] Fraś E., Górny M.: Thin wall ductile and austempered iron castings as substitutes for aluminium alloy castings. Foundry Trade Journal Int. 185 (3683) (2011) 85÷90.
- [7] Labrecque C., Gagne M.: Production of thin-wall ductile iron castings. Int. Journal of Cast Metals Res. 16 (2003) 313÷318.
- [8] Stefanescu D. M., Ruxanda R. E., Dix L. P.: The metllurgy and tensile mechanical properties of thin wall spheroidal graphite irons. Int. Journal of Cast Metals Res. 16 (2003) 319÷324.
- [9] Rafii-Tabar H., Chirazi A.: Multiscale computational modelling of solidification phenomena. Physics Reports-Review Section of Physics Letters 365 (2002) 145÷249.
- [10] Lee P. D., Chirazi A., Atwood R. C., Wang W.: Multiscale modelling of solidification microstructures, including microsegregation and microporosity, in an Al-Si-Cu alloy. Mat. Sci. Eng. A. 365 (2004) 57÷65.
- [11] Umantsev A. R., Vinogradov V. V., Borisov V. T.: Mathematical modelling of the dendrite growth during the solidification from undercooled melt. Kristallografia 30 (1985) 455÷460 (in Russian).
- [12] Rappaz M., Gandin Ch. A.: Probabilistic modelling of microstructure formation in solidification processes. Acta Metallurgica et Materialia 41 (1993) 345÷360.
- [13] Pan S., Zhu M.: A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth. Acta Materialia 58 (2010) 340÷352.
- [14] Guillemot G., Gandin Ch. A., Bellet M.: Interaction between single grain solidification and macrosegregation: Application of a cellular automatonfinite element model. Journal of Crystaf. Growth 303 (2007) 58÷68.
- [15] Beltran-Sanchez L., Stefanescu D. M.: A quantitative dendrite growth model and analysis ofstability concepts. Metall. Mat. Trans. A. 35 (2004) 2471÷2485.
- [16] Pavlyk V., Dilthey U.: Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling. Modelling and Simulation in Materials Science and Engineering (2004) 33÷45.
- [17] Zhu M. F., Hong C. P.: A three dimensional modified cellular automaton model for the prediction of solidification microstructures. ISIJ International 42 (2002) 520÷526.
- [18] Jarvis D. J., Brown S. G. R., Spittle J. A.: Modelling of non-equilibrium solidification in ternary alloys: comparison of 1D, 2D, and 3D cellular automaton-finite difference simulations. Mat. Sci. Techn. 16 (2000) 1420÷1424.
- [19] Burbelko A. A., Fraś E., Kapturkiewicz W., Gurgul D.: Modelling of dendritic growth during unidirectional solidification by the method of cellular automata. Mat. Sci. Forum 649 (2010) 217÷222.
- [20] Burbelko A. A., Fraś E., Kapturkiewicz W., Olejnik E.: Nonequilibrium kinetics of phase boundary movement in cellular automaton modelling. Mat. Sci. Forum 508 (2006) 405÷410.
- [21] Zhao H. L., Zhu M. F., Stefanescu D. M.: Modelling of the divorced eutectic solidification of spheroidal graphite cast iron. Key Engineering Materials 457 (2011) 324÷329.
- [22] Kapturkiewicz W., Burbelko A. A., Fraś E., Górny M., Gurugl D.: Computer modelling of ductile iron solidification using FDM and CA methods. Journal of Achievments in Materials and Manufacturing Engineering 43 (1) (2010) 310÷323.
- [23] Gandin Ch.-A., Rappaz M.: A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall. Mater. 42 (7) (1994) 2233÷2246.
- [24] Fraś E., Wiencek K., Burbelko A. A., Górny M.: The application of some probability density function of heterogeneous nucleation. Materials Science Forum 508 (2006) 425÷430.
- [25] Burbelko A., Fraś E., Gurgul D., Kapturkiewicz W., Sikora J.: Simulation of the ductile iron solidification using a cellular automaton. Key Engineering Materials 457 (2011) 330÷336.
- [26] Burbelko A., Gurgul D., Kapturkiewicz W., Górny M.: Cellular automaton modelling of ductile iron microstructure in the thin wall casting. “IOP Conference Series: Materials Science and Engineering” (submitted for print).
- [27] Hoyt J., Asta M.: Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag. Phys. Rev. B. 65 art. No. 214106 (2002) 1÷11.
- [28] Burbelko A. A., Kapturkiewicz W., Gurgul D.: Analysis of causes and means to reduce artificial anisotropy in modelling of the solidification process on cellular automaton. Solidification Processing 2007: Proceedings of the 5th Decennial International Conference on Solidification Processing. H. Jones eds., The University of Sheffield, UK (2007) 31÷35.
- [29] Dilthley U., Pavlik V.: Numerical simulation of dendrite morphology and grain growth with modified cellular automata. Modelling of Casting, Welding and Advanced Solidification Processes VIII, B. G. Thomas and C. Beckennann eds., TMS, Warrendale (1998) 589÷596.
- [30] Burbelko A., Gurgul D.: Modelling of primary and eutectic solidification by using CAFD method. Computer Methods in Materials Science 11 (1) (2011) 128÷134.
- [31] Gurgul D., Burbelko A. A.: Simulation of austenite and graphite growth in ductile iron by means of cellular automata. Archives of Metallurgy and Materials 55 (1) (2010) 53÷60.
Uwagi
EN
This work was supported by Polish NCN project No. N N508 621140.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77e68c59-f384-4788-8056-1725893b0466