Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the almost sure convergence of weighted sums of dependent random variables to a positive and finite constant, in the case when the random variables have either mean zero or no mean at all. These are not typical strong laws and they are called exact strong laws of large numbers. We do not assume any particular type of dependence and furthermore consider sequences which are not necessarily identically distributed. The obtained results may be applied to sequences of negatively associated random variables.
Czasopismo
Rocznik
Tom
Strony
103--121
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Mathematics, Illinois Institute of Technology, Chicago, Illinois, 60616, USA
autor
- Institute of Mathematics, Marie Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland
Bibliografia
- [1] A. Adler, Exact strong laws, Bull. Inst. Math. Acad. Sin. 28 (2000), pp. 141-166.
- [2] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1987.
- [3] T. K. Chandra and S. Ghosal, The strong law of large numbers for weighted averages under dependence assumptions, J. Theoret. Probab. 9 (1996), pp. 797-809.
- [4] Y. S. Chow and H. Robbins, On sums of independent random variables with infinite moments and “fair” games, Proc. Natl. Acad. Sci. USA 47 (1967), pp. 330-335.
- [5] N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 55 (1981), pp. 119-122.
- [6] I. Fazekas, P. Matuła, and M. Ziemba, A note on the weighted strong law of large numbers under general conditions, Publ. Math. Debrecen 9 (2017), pp. 373-386.
- [7] D. H. Hong and J. M. Park, Exact sequences for sums of pairwise i.i.d. random variables, Bull. Korean Math. Soc. 30 (1993), pp. 167-170.
- [8] K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), pp. 286-295.
- [9] M. Klass and H. Teicher, Iterated logarithm laws for asymmetric random variables barely with or without finite mean, Ann. Probab. 5 (1977), pp. 861-874.
- [10] E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), pp. 1137-1153.
- [11] R. A. Maller, Relative stability and the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 43 (1978), pp. 141-148.
- [12] P. Matuła, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), pp. 209-213.
- [13] V. V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford 1995.
- [14] L. X. Zhang and X. Y. Wang, Convergence rates in the strong laws of asymptotically negatively associated random fields, Appl. Math. J. Chinese Univ. 14 (1999), pp. 406-416.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77df9088-ad7e-485e-8d84-cea919ebe31d