Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The high mechanical properties of the Al-Li-X alloys contribute to their increasingly broad application in aeronautics, as an alternative for the aluminium alloys, which have been used so far. The aluminium-lithium alloys have a lower specific gravity, a higher nucleation and crack spread resistance, a higher Young’s module and they characterize in a high crack resistance at lower temperatures. The aim of the research planned in this work was to design an aluminium alloy with a content of lithium and other alloy elements. The research included the creation of a laboratorial melt, the microstructure analysis with the use of light microscopy, the application of X-ray methods to identify the phases existing in the alloy, and the microhardness test.
Czasopismo
Rocznik
Tom
Strony
5--10
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Moulding Technology and Non-Ferrous Metals Foundry Engineering, ul. Reymonta 23, 30-059 Kraków, Poland
autor
- Scentific Metal Treating Co., 106 ChancellorDrive., Roselle, IL. 60172, USA
Bibliografia
- [1] Górny, Z., Sobczak, J. (2005). Non-ferrous metals based novel materials in foundry practice. Kraków: ZA-PIS.
- [2] Dymek, S. (2012). Modern wrought aluminum alloys. Kraków: AGH Publishing.
- [3] Eswara Prasad, N., Gokhale, A. A. & Prama Rao, P. (2003). Mechanical behavior of aluminium-lithium alloys. Sadhana. 28(1,2), 209-246.
- [4] ASM Handbook. (2003). Volume 3-Alloy Phase Diagrams. Ohio: ASM International Materials Park.
- [5] Gupta, R. K., Nayan, N., Nagasireesha, G. & Sharma, S. C. (2006). Development and characterization of Al-Li alloys. Materials Science and Engineering. 420(a), 228-234.
- [6] De Jong, H. F. (1984). Aluminium-lithium alloys, the answer of the aluminium industry to the threat of advanced fibe- reinforced materials. Internal report. Delft University of Technology. Department of Aerospace Engineering.
- [7] ASM Handbook. (1990). Volume 2-Properties and selection: Nonferrous Alloys and Special Purpose Materials.
- [8] Lewandowska M., Mizera J. & Wyrzykowski J. (1996). The effect of precipitations on the microstructure and fatigue properties of Al-Li alloys. Solidification of Metals and Alloys. 28, 119-126.
- [9] Jiang, N., Gao, X. & Zheng, Z. (2010). Microstructure evolution of aluminium-lithium alloy 2195 undergoing commercial production. Trans. Nonferrous Met. Soc. of China 20.
- [10] Ryś, J. (1977). Principles of statistical quality control of metallic products. Kraków: AGH Publishing. 589.
- [11] Webster, D. (1984). Metal Progress. 125 (5), 33-37.
- [12] Białobrzeski, A. & Saja, K. (2011). Ultralight magnesium-lithium alloys for plastic working. Archives of Foundry Engineering. 11(3), 21-24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77dcdbfc-8830-4fff-9c86-b2ac94751cb1