
JACSM 2014, Vol. 6, No. 1, pp. 27 -

27

PERSISTENT COLLECTIONS WITH CUSTOMIZABLE

EQUIVALENCE AND IDENTITY SEMANTICS

Konrad Grzanek

IT Institute, University of Social Sciences, Łódź, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract

Providing a comprehensive set of mechanisms solving the problem of
controlling equivalence and identity requires implementing the functionality for
non-sequential containers instrumented with the enriched semantics. Functional
programming languages, like Clojure, typically miss the functionality by
default. The article presents the design considerations, concepts and
implementation details of generalized sets and maps aware of the customizable
equivalence and identity together with some usage examples.

Key words: Equivalence testing, semantics, identity, functional programming,
Clojure, persistent collections

1 Introduction

Testing object for their equivalence as well as creating criteria of establish-
ing their identity is one of the most important tasks to be realized during ma-
ture software implementation process. A developer must consider many fac-
tors here, like the typing system of the programming language, either static or
dynamic, based on the structural equivalence or using tags. The number and
the extent of decisions to be made when designing the identity and equiva-
lence related algorithms is so large and wide that the attempts to make a kind
of their uniformization in a single library or API requires special approaches.
Namely, the mechanisms must be put in a formal shape consisting of a set of
extendable equivalence and identity operators. A lack of these mechanisms
even in as mature programming languages as Java and Clojure led to a work
on their detailed design and implementation in the latter.

42

DOI 10.2478/jacsm-2014-0002

28

Persistent Collections With Customizable ...

The results of the undertaking were presented in a paper titled Equivalence
in Java and Clojure, Design and Implementation Considerations [1]. Most of
it's content focused on:
 the equivalence and identity abstractions,
 implementation details for Java primitive types [3],
 implementation details for java.lang.Number [2] derivatives,
 implementation details for some Clojure [4], [5] reference types (clo-

jure.lang.Ratio, clojure.lang.BigInt),
 implementation details for selected sequential values: instances of ja-

va.lang.String, clojure.lang.ISeq, java.util.List, kongra.core.Pair.

The mentioned paper lacked a presentation of concepts as well as imple-
mentation elements for other kinds of collections, namely sets and maps (as-
sociative containers). The present article may be treated thereafter as a natural
continuation of [1] with an aim to present customizable, extendable equiva-
lence and identity realization in the two kinds of containers. One final mark to
be made here is we will focus on Clojure persistent sets and maps, abandon-
ing completely other realizations of java.util.Set and java.util.Map interfaces
[2].

2 Equivalence, Identity and the Persistent Collections in Clojure

Traditionally the functional programming style is associated with a lack of
explicitly changeable state. Objects posses value semantics, they are immuta-
ble values like the notions in mathematics. This property opens ways to dis-
cuss formally the properties of programs and even sometimes makes the prop-
erties of programs provable. From the engineer's point of view the lack of
state makes achieving programs' correctness easier (in more complex cases �
possible).

Immutable collections are the core of Clojure data structures [5]. They are
called persistent there, with the term persistent meaning their persistence
across the operators working on them. In other words, the collection operators
in the language are non-destructive, they do not modify their arguments.
Another property of the persistent collections is their structure-sharing. This
is a pretty old concept, sequences with structure sharing were common in var-
ious dialects of Lisp (see [7], [8]). Nowadays data structures other than the
sequential ones are known to have the property, e.g. hash-tries [6]. Clojure
has the following kinds of persistent collections:

29

Grzanek K.

 sequences, including vectors1
 sets
 maps
 records � tagged objects with a map semantics

As stated earlier, our previous paper [1] presented a realization of custo-
mizable equivalence and identity operators for sequences (clojure.lang.ISeq
derivatives) and lists including vectors (clojure.lang.PersistentVector <: clo-
jure.lang.APersistentVector <: java.util.List). As a consequence of having
these mechanisms:

> (deep= [1M 2N] [1 2])
true
> (deep-hash [1M 2N])
994
> (deep-hash [1 2])
994

while with the default operators we have erroneous:

> (= [1M 2N] [1 2])
false
> (hash [1M 2N])
-1806861044
> (hash [1 2])
156247261

Unfortunately, with persistent sets and maps, things go wrong:

(deep= #{1M 2N} #{1 2})

No implementation of method: :binary-deep= of protocol:
#'kongra.identity/WithDeep= found for class: clojure.lang.PersistentHashSet

 [Thrown class java.lang.IllegalArgumentException]
2

and similarly:

(deep= {1M 2N} {1 2})
No implementation of method: :binary-deep= of protocol:
#'kongra.identity/WithDeep= found for class: clojure.lang.PersistentArrayMap

 [Thrown class java.lang.IllegalArgumentException]
2

1 In an opposition to other sequences, vector elements may be randomly accessed in constant

time using indexes, yet the vectors are not lazily evaluated, like other types of sequences may
be.

2 Observable when being run either in a standalone application or in the Clojure REPL

30

Persistent Collections With Customizable ...

The same lack of implementation occurs for kongra.identity/deep-hash op-
erator. As expected, the default Clojure equivalence and identity operators,
exhibit wrongful behavior:

> (= #{1M 2N} #{1 2})
false
> (hash #{1M 2N})
1271160563
> (hash #{1 2})
460223544

and

> (= {1M 2N} {1 2})
false
> (hash {1M 2N})
820711855
> (hash {1 2})
1952097988

A thoughtful reader might ask was this lack of implementation an accident
or a deliberate decision. The �deep� operators throw errors after all when
called with arguments of unsupported kinds. In fact it was a deliberate deci-
sion dictated by the following two considerations:
1. There should be no default and �safe� implementation for objects of arbi-

trary types. Raising errors allows to find out and eliminate unpredictability
in the system eagerly.

2. It is impossible to provide the implementation of the customizable equiva-
lence and identity operators for arbitrary set or map type.

The second point is particularly interesting. In the case of sequences and
lists (see [1]) the way to achieve the desired functionality was iterating over
the elements of the collection and either aggregating their deep-hash values
into a resulting deep-hash for the sequence or testing for the deep= (equiva-
lence) of the (deeply) compared sequences. This approach must be extrapo-
lated onto sets and maps as it seems to be the only reasonable implementation
strategy; a deep-hash or deep= for any collection is a derivative of deep-hash
or deep= of it's components. Unfortunately, due to various ways a set or a
map may be implemented (hash codes, balanced trees), there is no easy way

31

Grzanek K.

to provide the �deep� semantics into these kinds of collections3; one can't in-
ject neither deep-hash nor deep= into their internal workings4.

All this led to making another undertaking of implementing special flavors
of persistent sets and maps characterized by:
 possessing the deep-hash/deep= semantics,
 generosity in their implementation,
 ability to derive the actual container implementation by relying transpa-

rently on a specific back-end collection.

The following sections constitute a detailed description of the design deci-
sions and a presentation of their implementation details.

3 DeepEntry

The major idea behind the realization of our sets and maps was to create
wrapper instances that would be the actual representations of the objects to
store within the container. Using this approach we could forget about reaching
for the storage internals at the same time not loosing the ability to inject the
customizable equivalence and identity semantics. We may call the wrapper
instances the proxy objects (behind the proxy design pattern as described in
[9]), because they allow to modify the original behavior of the stored objects.

The proxy type is called DeepEntry. The instances of this class are immut-
able POJO (Plain-Old Java Objects). The following listing shows the static
structure of the class:

public class DeepEntry {

 private final Object value;

 private int hash; // Default to 0

 private DeepEntry(Object value) {
 this.value = value;
 }
}

3 In an opposition to a simple sequence or list a set or map exhibits a whole variety of �views�

of it's data in a form of iterators, entry sets, etc. It is a natural and justifiable expectation to
these derivative �views� to also provide the �deep� semantics.

4 Testing a set or a map for containing a specified element is the most problematic functionali-
ty, as the test is associated with using deep-hash and/or deep= instead of default ja-
va.lang.Object methods hashCode and/or equals in the core storage for these data structures.

32

Persistent Collections With Customizable ...

Deep entries simply store the value and they offer caching of hash codes,
like other immutable Java classes, e.g. java.lang.String. The two overridden
methods are the core of the implementation:

 @Override
 public int hashCode() {
 if (0 == hash && null != value) {
 hash = (Integer) DeepHash.proxy.invoke(value);
 }
 return hash;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }
 final Object result = DeepEquiv.proxy.invoke(
 value, DeepEntry.uncast(obj));
 return RT.booleanCast(result);
 }

As it can be seen, both the identity as well as the equivalence operators ex-
pressed this way use the deep-hash and deep= procedures, represented here
by special Java constants DeepEquiv.proxy and DeepHash.proxy.

DeepEntry belongs in fact to the implementation internals, it has a private
constructor, but still there are the useful operators that allow any object to be
coerced to a DeepEntry:

public static DeepEntry cast(Object obj) {
 if (obj != null &&
 obj.getClass() == DeepEntry.class) {
 return (DeepEntry) obj;
 }
 return new DeepEntry(obj);
}

and uncasted afterward if needed:

public static Object uncast(Object obj) {
 if (obj != null &&
 obj.getClass() == DeepEntry.class) {
 return ((DeepEntry) obj).value;
 }
 return obj;

}

33

Grzanek K.

The latter mechanism is also extended to a form of a Clojure procedure, as
this procedure is a part of the implementation (referenced to in the following
sections):

public static final AFn uncastFn = new AFn() {
 @Override
 public Object invoke(Object arg) {
 return uncast(arg);
 }
};

4 DeepSet

A DeepSet, the set that uses the customizable equivalence and identity se-
mantics is the first kind of collection to be described. In fact it's internals are
relatively simple to present.

The construction of the class mimics the implementations of other persis-
tent sets within the standard Clojure library � the class is effectively non-
extendable (by the presence of only private constructor), it has the value se-
mantics and it implements a set of useful interfaces:

public class DeepSet extends AFn implements IObj,
 IPersistentSet, Set, IHashEq {

 private final APersistentSet impl;

 private DeepSet(APersistentSet impl) {
 this.impl = impl;
 }

}

As it can be seen above, a DeepSet instance wraps a persistent set (the
class clojure.lang.APersistentSet is the persistent set abstraction) called impl
here. All objects stored in the DeepSet are being actually put into the persis-
tent set after being coerced to a DeepEntry. This is a design pattern common
both for DeepSets and for their associative counterpart � the DeepMap (see
the next section). A manifestation of this approach can be seen at the follow-
ing listing presenting the process of creating the set:

public static DeepSet create(APersistentSet impl) {
 return new DeepSet(impl);
}

34

Persistent Collections With Customizable ...

public static DeepSet create(APersistentSet impl,
 Object... elements) {
 if (elements.length == 0) {
 return new DeepSet(impl);
 }

 for (Object object : elements) {
 impl = (APersistentSet) impl.cons(
 DeepEntry.cast(object));
 }
 return new DeepSet(impl);
}

The underlined part of the code is the process of performing the actual sto-
rage of an object with simultaneous coercing to DeepEntry.

With the presence of this approach, implementing equivalence operators
for DeepSet is trivial; it boils down to calling proper equivalence operators on
the underlying impls.

@Override
public boolean equiv(Object obj) {
 if (this == obj) {
 return true;
 }
 if (!(obj instanceof DeepSet)) {
 return false;
 }
 DeepSet other = (DeepSet) obj;
 return this.impl.equals(other.impl);
}

@Override
public boolean equals(Object obj) {
 return this.equiv(obj);
}

The same can be told about computing the hash code using the customiza-
ble mechanisms � the work is done in the impl with the presence of DeepEn-
tries and their semantics:

@Override
public int hashCode() {
 return impl.hashCode();
}

35

Grzanek K.

@Override
public int hasheq() {
 return hashCode();
}

On the Clojure side there is a collection of mechanisms for creating Deep-
Set instances:

(defn deep-hash-set
 ([]
 (DeepSet/create (hash-set)))

 ([& keys]
 (DeepSet/create ^APersistentSet (hash-set) keys)))

and

(defn deep-sorted-set
 [& keys]
 (DeepSet/create ^APersistentSet
 (sorted-set-by (deep-comparator))
 keys))

(defn deep-sorted-set-by
 [pred & keys]
 ((DeepSet/create ^APersistentSet
 (sorted-set-by (deep-comparator pred))
 keys)))

The latter two implemented with the help of a special constructor of Dee-
pEntry aware comparators:

(defn deep-comparator
 ([]
 (deep-comparator compare))

 ([pred]
 (fn [e1 e2]
 (pred (DeepEntry/uncast e1)
 (DeepEntry/uncast e2)))))

There are also the procedures for casting collections into DeepSets:

(defn deep-set?
 [x]
 (instance? DeepSet x))

36

Persistent Collections With Customizable ...

(defn ^DeepSet deep-set
 [coll]
 (if (deep-set? coll)
 coll

 (apply deep-hash-set (seq coll))))

and a predefined empty DeepSet:

(def EMPTY-DEEP-SET (deep-hash-set))

All the destructive java.lang.Set operators are prohibited on DeepSet, as it
is a persistent, immutable type. This is why:

@Override
public boolean add(Object e) {
 throw new UnsupportedOperationException();
}

@Override
public boolean remove(Object o) {
 throw new UnsupportedOperationException();
}

@Override
public boolean addAll(Collection c) {
 throw new UnsupportedOperationException();
}

@Override
public boolean removeAll(Collection c) {
 throw new UnsupportedOperationException();
}

@Override
public boolean retainAll(Collection c) {
 throw new UnsupportedOperationException();
}

@Override
public void clear() {
 throw new UnsupportedOperationException();
}

37

Grzanek K.

Finally, after extending the proper protocols5, namely WithDeepHash and
WithDeep= (see [1]), we get:

> (in-ns 'kongra.identity)

> (def s1 (deep-hash-set 1M 2N))
> s1
#{1M 2N}

> (def s2 (deep-hash-set 1 2))
> s2
#{1 2}

> (deep-hash s1)
3
> (deep-hash s2)
3
> (deep= s1 s2)
true

Additionally, the semantics expands onto the standard Clojure identity and
equivalence operators:

> (= s1 s2)
true
> (hash s1)
3
> (hash s2)
3

5 DeepMap

The implementation of an associative container differs from the DeepSet
mostly in the fact that here we store both keys and values, both wrapped with-
in the DeepEntry. The DeepMap also uses impl � an internal back-end sto-
rage, but here it is a persistent map (clojure.lang.APersistentMap derivative):

public class DeepMap extends AFn implements
 IObj, IPersistentMap, Map,
 Serializable, MapEquivalence, IHashEq {

 private final APersistentMap impl;

5 Tedious to present here due to a large amount of source code. For more, see the kon-

gra/identity.clj compilation unit.

38

Persistent Collections With Customizable ...

 private DeepMap(APersistentMap impl) {
 this.impl = impl;
 }
}

The identity (hash) and equivalence operators are trivial, as in the case of
the DeepSet:

@Override
public boolean equiv(Object obj) {
 if (this == obj) {
 return true;
 }
 if (!(obj instanceof DeepMap)) {
 return false;
 }
 DeepMap other = (DeepMap) obj;
 return this.impl.equals(other.impl);
}

@Override
public boolean equals(Object obj) {
 return this.equiv(obj);
}

@Override
public int hashCode() {
 return impl.hashCode();
}

@Override
public int hasheq() {
 return hashCode();
}

Creating DeepMaps is associated with performing the process of putting
the keys and values into the impl after wrapping them. One can observe this at
the following piece of code:

public static DeepMap create(APersistentMap impl,
 Map other) {
 if (null == other) {
 return create(impl);
 }

 for (Object obj : other.entrySet()) {
 Map.Entry entry = (Map.Entry) obj;

39

Grzanek K.

 impl =
 (APersistentMap) impl.assoc(
 DeepEntry.cast(entry.getKey()),
 DeepEntry.cast(entry.getValue()));
 }
 return create(impl);
}

For the associative containers we also have a collection of operators on the
Clojure side, that allow to create the �deep� maps:

(defn deep-hash-map
 ([] (DeepMap/create (hash-map)))

 ([& keyvals]
 (DeepMap/create ^APersistentMap (hash-map)
 keyvals)))

(defn deep-sorted-map
 [& keyvals]
 (DeepMap/create ^APersistentMap (sorted-map-by
 (deep-comparator))
 keyvals))

(defn deep-sorted-map-by
 [pred & keyvals]
 (DeepMap/create ^APersistentMap (sorted-map-by
 (deep-comparator pred))
 keyvals))

or casting arbitrary maps into their �deep� counterparts:

(defn ^DeepMap deep-map
 [m]
 (cond (deep-map? m)
 m

 (instance? clojure.lang.Sorted m)
 (let [c (.comparator ^clojure.lang.Sorted m)]
 (DeepMap/create ^APersistentMap
 (sorted-map-by (deep-comparator c))
 ^java.util.Map m))

 (instance? java.util.SortedMap m)
 (let [c (.comparator ^java.util.SortedMap m)]
 (DeepMap/create ^APersistentMap
 (sorted-map-by (deep-comparator c))

40

Persistent Collections With Customizable ...

 ^java.util.Map m))
 :else
 (DeepMap/create ^APersistentMap (hash-map)
 ^java.util.Map m)))

As in the case of the DeepSet, DeepMaps ensure their non-destructive na-
ture by raising exceptions on an attempt to call destructive operators (belong-
ing to the java.util.Map contract). For the sake of simplicity we do not present
the related source codes here.

Testing for keys and values containment is as trivial as in the case of the
identity and equivalence implementation after wrapping the arguments wi-
thind DeepEntry:

@Override
public boolean containsKey(Object key) {
 return impl.containsKey(DeepEntry.cast(key));
}

@Override
public boolean containsValue(Object value) {
 return impl.containsValue(DeepEntry.cast(value));
}

and similarly in the case of retrieving values stored under the given keys:
@Override
public Object get(Object key) {
 return DeepEntry.uncast(impl.get(DeepEntry.cast(key)));
}

One final interesting implementation aspect is the algorithm for building
the derivative collections of map entries, keys and values. They are all built
around the same pattern � instances of kon-
gra.utils.decorators.ImmutableDecoratingSet6 are used as shown below:

@SuppressWarnings("unchecked")
@Override
public Set entrySet() {
 return new ImmutableDecoratingSet<Map.Entry,
 Map.Entry>
 (impl.entrySet()) {
 @Override
 protected Map.Entry decorate(Object o) {
 Map.Entry entry = (Map.Entry) o;

6 Full presentation of this interesting collection, whose range of possible applications is by no

means limited to the functionality presented here, goes beyond the scope of this article.

41

Grzanek K.

 return new MapEntry(DeepEntry.uncast(
 entry.getKey()),
 DeepEntry.uncast(entry.getValue()));
 }
 };
}
@SuppressWarnings("unchecked")
@Override
public Set keySet() {
 return new ImmutableDecoratingSet(impl.keySet()) {
 @Override
 protected Object decorate(Object o) {
 return DeepEntry.uncast(o);
 }
 };
}

or � in the case of java.util.Map.values method implementation � the kon-
gra.utils.decorators.ImmutableDecoratingCollection6 is used instead:

@SuppressWarnings("unchecked")
@Override
public Collection values() {
 return new ImmutableDecoratingCollection(
 impl.values()) {
 @Override
 protected Object decorate(Object o) {
 return DeepEntry.uncast(o);
 }
 };
}

There are few more elements of the implementation of the DeepMap con-
tainer whose presentation in this paper was postponed for the sake of the
overall clarity.

Using the container is straightforward and it leads to the desired behaviors:

> (def m1 (deep-hash-map 1M 2N))
> m1
{1M 2N}
> (def m2 (deep-hash-map 1 2))
> m2
{1 2}
> (deep= m1 m2)
true
> (deep-hash m1)
3

42

Persistent Collections With Customizable ...

> (deep-hash m2)
3

As with DeepSets, here we also have:

> (= m1 m2)
true
> (hash m1)
3
> (hash m2)
3

6 Conclusions

This paper finalizes a series of articles related to the customizable equiva-
lence and identity in Clojure. The presented mechanisms should be used
where needed, optionally extended on demand by modifying and/or extending
the protocols presented in [1] and referenced to in this article. Establishing the
specific performance profiles of the algorithms shown is left to the discretion
of their users.

References

1. Grzanek K., 2013, Identity in Java and Clojure, Design and Implementation
Considerations, Journal of Applied Computer Science Methods, No. 2 Vol. 5
2013

2. Oracle, 2014, Java� Platform, Standard Edition 8 API Specification,
http://docs.oracle.com/javase/8/docs/api/

3. Gosling J., Joy B., Steele G., Bracha G., 2005, The Java� Language Specifica-
tion Third Edition, ISBN 0-321-24678-0, available at the Oracle Technology
Network (2014) http://docs.oracle.com/javase/specs/

4. Halloway S., 2009, Programming Clojure, ISBN: 978-1-93435-633-3, The
Pragmatic Bookshelf

5. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O'Reilly Me-
dia Inc., ISBN: 978-1-449-39470-7

6. Bagwell P., 2000, Ideal Hash Trees (Report), Infoscience Department, École
Polytechnique Fédérale de Lausanne

7. Touretzky D.S., 1990, COMMON LISP: A Gentle Introduction to Symbolic
Computation, The Benjamin/Cummings Publishing Company,Inc., ISBN: 0-
8053-0492-4

8. Graham P., 1993, On Lisp - Advanced Techniques for Common Lisp, Prentice
Hall; 1st edition (September 9, 1993), ISBN-10: 0130305529, ISBN-13: 978-
0130305527

9. Gamma, et al., E., 1995., Design Patterns. Reading, MA: Addison-Wesley Pub-
lishing Co, Inc. pp. 175ff. ISBN: 0-201-63361-2

