PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Właściwości mechaniczne i termiczne nanokompozytów P(MAA-co-MMA)/PVP/MWNT

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Thermal and mechanical properties of P(MAA-co-MMA)/PVP/MWNTs nanocomposites
Języki publikacji
PL EN
Abstrakty
PL
Sieci poli(kwasu metakrylowego-metakrylanu metylu) (P(MAA-co-MMA) zostały otrzymane na drodze kopolimeryzacji wolnorodnikowej w obecności liniowego poli(N-winylo-2-pirolidonu) (PVP) i wielościennych nanorurek węglowych (MWNT) tj. nanokompozytów P(MAA-co-MMA)/PVP/MWNT. Sprawdzono wpływ MWNT na właściwości mechaniczne i termiczne nanokompozytów P(MAA-co-MMA)/PVP/MWNT. Stwierdzono, że MWNT może zapewnić znaczną poprawę właściwości mechanicznych nanokompozytów P(MAA-co-MMA)/PVP/MWNT. Analiza termiczna wykazała, że widoczna poprawa stabilności termicznej dla nanokompozytów P(MAA-co-MMA)/PVP/MWNT występuje wraz ze zwiększającą się zawartością MWNT.
EN
Poly(methacrylic acid-co-methyl methacrylate) (P(MAA-co-MMA)) networks were prepared via free radical copolymerization in the presence of linear poly(N-vinyl-2-pyrrolidone) (PVP) and multiwalled carbon nanotubes (MWNTs), i.e., P(MAA-co-MMA)/PVP/MWNTs nanocomposites. The effect of MWNTs on the thermal and of mechanical properties of P(MAA-co-MMA)/PVP/MWNTs nanocomposites have been investigated. It was found that, MWNTs could provide P(MAA-co-MMA)/PVP/MWNTs nanocomposites with much improved mechanical properties. Thermal analysis showed that a clear improvement of thermal stability for P(MAA-co-MMA)/PVP/MWNTs nanocomposites increased with increasing MWNTs content.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • College of Material Science and Engineering, Henan University of Technology, Zhengzhou, China
Bibliografia
  • 1. C., Bosoy A., et al.: Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 2012, 41, 2590–2605.
  • 2. Wittmar A., Ruiz-Abad D., Ulbricht M.: Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology. J. Nannopart. Res. J. 2012, 14, 1–10.
  • 3. Tang F., Li L., Chen D.: Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.
  • 4. Ambrogio M. W., Thomas C. R., Zhao Y. L, et al.: Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Accounts chem. Res. 2011, 44, 903–913.
  • 5. Papoulis D., Komarneni S., Panagiotaras D., et al.: Three-phase nanocomposites of two nanoclays and TiO2: Synthesis, characterization and photacatalytic activities. Appl. Catal. B-Environ. 2014, 147, 526–533.
  • 6. Huttunen-Saarivirta E., Vaganov G. V., Yudin V. E., et al.: Characterization and corrosion protection properties of epoxy powder coatings containing nanoclays. Prog. Org. Coat. 2013, 76, 757–767.
  • 7. Aulin C., Salazar-Alvarez G., Lindström T.: H igh strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 2012, 4, 6622–6628.
  • 8. Sánchez-Jiménez P. E., Pérez-Maqueda L. A., Perejón A., et al.: Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J. Phys. Chem. C 2012, 116, 11797–11807.
  • 9. Juan-Alcaniz J., Gascon J., Kapteijn, F.: Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J. Mater. Chem. 2012, 22, 10102–10118.
  • 10. Dreyer D. R., Jarvis K. A.; Ferreira P. J.: Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites. Polym. Chem-UK 2012, 3, 757–766.
  • 11. Gu H ., Huang Y., Zhang X., etc.: Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 2012, 53, 801–809.
  • 12. Coleman J.N., Khan U., Blau J., Gun’ko Y.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006, 44, 1624–1652.
  • 13. Jeon J. H ., Lim J. H ., Kim K. M.: Fabrication of hybrid nanocomposites with polystyrene and multiwalled carbon nanotubes with well-defined polystyrene via multiple atom transfer radical polymerization. Polymer 2009, 50, 4488–4495.
  • 14. Lee W. I., Kim S. H ., Park J. M.: Assessment of dispersion in carbon nanotube reinforced composites using differential scanning calorimetry. Carbon 2009, 47, 2699–2703.
  • 15. Zhang Q., Mochalin V. N., Neitzel I., et al.: Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 2011, 32, 87–94.
  • 16. Deng L., Eichhorn S. J., Kao C. C., et al.: The effective young’s modulus of carbon nanotubes in composites. Acs. Appl. Mater. Inter. 2011, 3, 433–440.
  • 17. A. M., Remškar M., et al.: New inorganic nanotube polymer nanocomposites: improved thermal, mechanical and tribological properties in isotactic polypropylene incorporating INTMoS2. J. MATER. CHEM. 2012, 22, 17002–17010.
  • 18. Gkikas G., Barkoula N. M., Paipetis A. S.: Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos. Part. B-Eng, 2012, 43, 2697–2705.
  • 19. Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D. S.: Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 2011, 89–108.
  • 20. Donini C., Robinson D. N., Colombo P., Giordano F., Peppas N. A.: Preparation of poly(methacrylic acid-g-poly(ethylene glycol)) nanospheres from methacrylic monomers for pharmaceutical applications. Int. J. Pharm. 2002, 245, 83–91.
  • 21. Gan Z., Ju J., Zhang T., Wu D.: Preparation of Rhodamine B Fluorescent Poly(methacrylic acid) Coated Gelatin Nanoparticles. J. Nanomater 2011, 2011, 231–238.
  • 22. Inal M., Yigitoglu M.: Improvement of Bioethanol Productivity of Immobilized Saccharomyces Bayanus with Using Sodium Alginate-Graft-Poly(N-Vinyl-2-Pyrrolidone) Matrix. Appl. Biochem. Biotech. 2012, 168, 266–278.
  • 23. Aldana A. A., Gonzalez A., Strumia M. C., Martinelli M.: Preparation and characterization of chitosan/genipin/poly(N-vinyl-2-pyrrolidone) films for controlled release drugs. Mater. Chem. Phys. 2012, 134, 317–324.
  • 24. Leszczyńska, A., Njuguna, J., Pielichowski, K., Banerjee, J. R.: Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim. Acta 2007, 453, 75–96.
  • 25. Sternstein S., and Zhu A. J.: Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 2002, 35, 7262–7273.
  • 26. Vacatello M.: Chain dimension in filled polymers: an intriguing problem. Macromolecules 2002, 35, 8191–8193.
  • 27. Fu Q., Wang G., Liu C.: Polyethylene toughened by CaCO3 particles: The interface behaviour and fracture mechanism in high density polyethylene/CaCO3 blends. Polymer 1995, 36, 2397–2401.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77d5e168-8dd1-41f4-9119-825a21d5b146
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.