PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy-based PSO algorithm for transmission line Losses minimization with UPFC

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Rozmyty algorytm PSO dla linii przesyłowej Minimalizacja strat z UPFC
Języki publikacji
EN
Abstrakty
EN
In this paper, one of the essential types of flexible alternating current transmission systems (FACTS), the Unified Power Flow Controller(UPFC), was used to reduce the losses in transmission lines. A particle swarm optimization (PSO)-based modified fuzzy logic (FL)controller with UPFC was proposed to obtain the optimal location of UPFC and optimum parameters of the normalized fuzzy controller to achieve the objective function of the research and compare the results with the PI-controller. The Newton-Raphson method was employed to perform load flow analysis by MATLAB code/M-file. The proposed method was tested in the IEEE-14bus system, and the results showed that the PSO-FL minimized losses better than PSO-PI.
PL
W artykule wykorzystano jeden z podstawowych typów elastycznych systemów przesyłowych prądu przemiennego (FACTS), czyli Unified Power Flow Controller (UPFC), w celu zmniejszenia strat w liniach przesyłowych. W celu uzyskania optymalnej lokalizacji UPFC i optymalnych parametrów znormalizowanego kontrolera rozmytego w celu osiągnięcia celu badań i porównania wyników z PI zaproponowano zmodyfikowany sterownik z logiką rozmytą (FL) oparty na optymalizacji roju cząstek (PSO) z UPFC. -kontroler. Do wykonania analizy przepływu obciążenia za pomocą kodu MATLAB/pliku M zastosowano metodę Newtona-Raphsona. Zaproponowana metoda została przetestowana w systemie IEEE-14bus, a wyniki wykazały, że PSO-FL minimalizuje straty lepiej niż PSO-PI.
Słowa kluczowe
Rocznik
Strony
139--144
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • University of Technology / Baghdad / Iraq / mailbox 19006
  • University of Technology / Baghdad / Iraq / mailbox 19006
autor
  • University of Technology / Baghdad / Iraq / mailbox 19006
Bibliografia
  • [1] M. Mezaache, K. Chikhi, and C. Fetha, “UPFC device: Optimal location and parameter setting to reduce losses in electric power systems using a genetic-algorithm method,” Trans. Electr. Electron. Mater., vol. 17, no. 1, pp. 1–6, 2016, doi: 10.4313/TEEM.2016.17.1.1.
  • [2] C. Subramani, A. A. Jimoh, S. S. Dash, and S. Harishkiran, “PSO application to optimal placement of UPFC for loss minimization in power system, ” Adv. Intell. Syst. Comput., vol. 467, pp. 223–230, 2017, doi: 10.1007/978-981-10-1645-5_19.
  • [3] S. Hocine and L. Djamel, “Optimal number and location of UPFC devices to enhence voltage profile and minimizing losses in electrical power systems, ” Int. J. Electr. Comput. Eng., vol. 9, no. 5, pp. 3981–3992, 2019, doi: 10.11591/ijece.v9i5. pp.3981-3992.
  • [4] B. Gaur, R. Ucheniya, and A. Saraswat, Real power transmission loss minimization and bus voltage improvement using UPFC, vol. 662. Springer Singapore, 2020.
  • [5] N. T. Rao, M. M. Sankar, S. P. Rao, and B. S. Rao, “Comparative study of Pareto optimal multi objective cuckoo search algorithm and multi objective particle swarm optimization for power loss minimization incorporating UPFC,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 1, pp. 1069–1080, 2021, doi: 10.1007/s12652-020-02142-4.
  • [6] M. Ćalasan, T. Konjić, K. Kecojević, and L. Nikitović, “Optimal allocation of static var compensators in electric power systems,” Energies, vol. 13, no. 12, 2020, doi: 10.3390/en13123219.
  • [7] V. Kashyap and R. Rahangdale, “Determination of Optimal Location of Upfc Controller Devices in Electric Transmission System by Using Pso Method,” J. Electr. Electron. Eng., vol. 11, no. 3, pp. 1–8, 2016, doi: 10.9790/1676-1103010108.
  • [8] G. A. Salman, M. H. Ali, and A. N. Abdullah, “Implementation optimal location and sizing of UPFC on Iraqi power system grid (132 kV) using genetic algorithm,” Int. J. Power Electron. Drive Syst., vol. 9, no. 4, pp. 1607–1615, 2018, doi: 10.11591/ijpeds.v9n4. pp. 1607-1615.
  • [9] S. Monshizadeh, G. J. Hegglid, and S. T. Hagen, Comparison of Intelligent Algorithms with FACTS Devices for Minimization of Total Power Losses, vol. 926. Springer International Publishing, 2020.
  • [10] P. P. Deka, D. Marsharing, D. Bordoloi, K. Deka, and S. Dey, “Application of Fuzzy and PI based UPFC in Electrical Power System,” Int. J. Innov. Res. Electr. Electron. Instrum. ControlEng., vol. 4, no. 4, pp. 325–328, 2016, doi: 10.17148/IJIREEICE.2016.4482.
  • [11] S. D. S. Jebaseelan, M. Kavitha, D. N. S. Ravikumar, A. A. G. Dhas, and N. Joy, “Fuzzy logic controller based UPFC for voltage profile improvement in a smart grid,” AIP Conf. Proc., vol. 2311, no. December, 2020, doi: 10.1063/5.0034632.
  • [12] L. Gyugyi, “Unified power-flow control concept for flexible AC transmission systems,” IEE Proc. C Gener. Transm. Distrib., vol. 139, no. 4, pp. 323–331, 1992, doi: 10.1049/ip-c.1992.0048.
  • [13] M. Noroozian, L. Ängquist, M. Ghandhari, and G. Andersson,“Use of UPFC for optimal power flow control,” IEEE Trans. Power Deliv., vol. 12, no. 4, pp. 1629–1634, 1997, doi: 10.1109/61.634183.
  • [14] M. Zahid et al., “New approach for optimal location and parameters setting of upfc for enhancing power systems stability under contingency analysis,” Energies, vol. 10, no. 11, 2017, doi: 10.3390/en10111738.
  • [15] M. Y. Suliman and M. T. Al-Khayyat, “Power flow control inparallel transmission lines based on upfc,” Bull. Electr. Eng. Informatics, vol. 9, no. 5, pp. 1755–1765, 2020, doi: 10.11591/eei.v9i5.2290.
  • [16] M. Noroozian et al., “A comprehensive newton-raphson UPFC model for the quadratic power flow solution of practical power networks,” IEEE Trans. Power Syst., vol. 15, no. 4, pp. 1629–1634, 1997, doi: 10.1109/59.852107.
  • [17] B. Bhattacharyya, V. K. Gupta, and S. Kumar, “UPFC with series and shunt FACTS controllers for the economic operation of a power system,” Ain Shams Eng. J., vol. 5, no. 3, pp. 775–787, 2014, doi: 10.1016/j.asej.2014.03.013.
  • [18] A. AL Ahmad and R. Sirjani, “Optimal placement and sizing of multi-type FACTS devices in power systems using metaheuristic optimisation techniques: An updated review,” Ain Shams Eng.J., vol. 11, no. 3, pp. 611–628, 2019, doi: 10.1016/j.asej.2019.10.013.
  • [19] L. Saribulut, M. Tümay, and Đ. Eker, “Performance Analysis of Fuzzy Logic Based Unified Power Flow Controller,” Int. J. Electron. Commun. Eng., vol. 2, no. 9, pp. 1807–1812, 2008.
  • [20] Y. del Valle, S. Mohagheghi, J.-C. Hernandez, and R. G. Harley, “Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems,” IEEE Trans. Evol. Comput., vol. 12, no. 2, pp. 171–195, 2008, doi: https://doi.org/10.1109/TEVC.2007.896686.
  • [21] Y. P. Zhou, L. J. Tang, J. Jiao, D. D. Song, J. H. Jiang, and R. Q. Yu, “Modified particle swarm optimization algorithm for adaptively configuring globally optimal classification and regression trees,” J. Chem. Inf. Model., vol. 49, no. 5, pp. 1144–1153, 2009, doi: 10.1021/ci800374h.
  • [22] I. A. Amin, D. Y. Mahmood, and A. H. Numan, “Optimal Localization of UPFC For Transmission Line Losses Minimizing Using Particle Swarm Optimization,” Eng. Technol. J., vol. 39, no. 10, pp. 1463–1472, 2021, doi: 10.30684/etj.v39i10.1656.
  • [23] M. R. AlRashidi and M. E. El-Hawary, “A survey of particleswarm optimization applications in electric power systems,” IEEE Trans. Evol. Comput., vol. 13, no. 4, pp. 913–918, 2009, doi: 10.1109/TEVC.2006.880326.
  • [24] R. Al-Rubayi and M. Eesee, “Optimal Location and ParameterSetting of STATCOM Device Based PSO for Iraqi Grid Voltage Profile Enhancement and Power Losses Minimizing,” Eng. Technol. J., vol. 37, no. 2A, pp. 60–69, 2019, doi: 10.30684/etj.37.2a.4.
  • [25] F. S. Abdulla, A. N. Hamoodi, and A. M. Kheder, “Particle swarm optimization algorithm for solar PV system under partial shading,” Prz. Elektrotechniczny, vol. 97, no. 10, pp. 87–90, 2021, doi: 10.15199/48.2021.10.17.
  • [26] P. Mishra, V. Holkar, and A. Choubey, “Enhancement of voltage profile for IEEE-14 Bus System by Using STATIC-VAR Compensation (SVC) when Subjected to Various Changes in Load,” Int. J. Res. Stud. Sci. Eng. Technol., vol. 1, no. 2, pp. 27–33, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77ce9e95-d50a-4983-a20e-8f3b10e66beb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.