Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Modern geomorphological analyses largely benefit from GIS tools developed for landform and landscape mapping. Semi-automated methods with the use of public domain elevation datasets ensure the mapping of large areas with relatively low time and cost requirements, leaving less space for subjectivity. For our analysis we chose the geomorphons approach, a robust cell-based method to identify landform elements at a broad range of scales. Based on the delineated landforms and auxiliary morphometric parameters it was possible to map the geomorphological landscapes occurring in Hungary with the supervised classification algorithm implemented in the GeoPAT toolset. The scientific output of the presented work is twofold: one aspect is the creation of an objective and quantifiable map of landforms and geomorphic landscapes of Hungary, while the successful application of the available methodology and the evaluation of SRTM1 model’s applicability for geomorphological purposes are also significant results.
Wydawca
Czasopismo
Rocznik
Tom
Strony
19--31
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- University of Pécs, Faculty of Sciences; Doctoral School of Earth Sciences; Ifjúság str. 6., H–7624, Pécs, Hungary
autor
- University of Pécs, Faculty of Sciences; Institute of Geography; Department of Physical and Environmental Geography; Ifjúság str. 6., H–7624, Pécs, Hungary
Bibliografia
- Bishop M.P., James L.A., Shrder J.F. Jr., Walsh S.J., 2012. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology 137, 5–26.
- Bulla B., 1962. Magyarország természeti tájai (Physical geographical landscapes of Hungary). Földrajzi Közlemények (Geographical Review) 10, 1, 1–16.
- Csillag G., Sebe K., 2015. Long-Term Geomorphological Evolution. [in:] D. Lóczy (ed.), Landscapes and Landforms of Hungary. Springer International Publishing, Switzerland, 29–38.
- Drăgu L., Blaschke T., 2006. Automated classification of landform elements using object-based image analysis. Geomorphology 81, 330–344.
- Drăgu L., Eisank C., 2012. Automated object-based classification of topography from SRTM data.Geomorphology 141–142, 21–33.
- Dövényi Z. ed., 2010. Magyarország kistájainak katasztere (Inventory of microregions in Hungary).Magyar Tudományos Akadémia, Csillagászati és Földtudományi Kutatóintézet, Budapest.
- Evans I.S., 2012. Geomorphometry and landform mapping: what is a landform? Geomorphology 137, 94–106.
- Global Forest Change 2000-2014. http://earthenginepartners.appspot.com/science-2013-global-forest.
- Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342 (15 November): 850–53. Data available on-line from: http://earthenginepartners.appspot.com/science-2013-global-forest.
- Hegedűs A., 2004. A domborzat fő formáinak vizsgálata digitalis domborzatmodell alapján (Analysing the main landforms using DEM). HUNDEM 2004 Conference, 11–12. November 2004, Miskolc, 1–11.
- Jasiewicz J., Netzel P., Stepinski T.F., 2014. Landscape similarity, retrieval, and machine mapping of physiographic units. Geomorphology 221, 104–112.
- Jasiewicz J., Stepinski T.F., 2013. Geomorphons – a pattern recognition approach to classification and mapping of landforms. Geomorphology 182, 147–156.
- Józsa E., 2015. An evaluation of EU-DEM and SRTM1 in comparison with ASTER GDEM, SRTM3 and reference DEMs – geomorphometric approaches. [in:] B. Balázs (ed.), Az elmélet és a gyakorlat találkozása a térinformatikában VI. (Theory meets practice in GIS vol. VI.). Debreceni Egyetemi Kiadó, Debrecen, 117–125.
- Józsa E., Fábián Sz.Á., Kovács M., 2014. Evaluation of EU-DEM in comparison with ASTER GDEM, SRTM and contour-based DEMs over the Eastern Mecsek Mountains. Hungarian Geographical Bulletin 63 (4), 401–423.
- Lóczy D. 2015. Geomorphological Regions. [in:] D. Lóczy (ed.), Landscapes and Landforms of Hungary. Springer International Publishing, Switzerland, 39–46.
- Marosi S., Somogyi S., eds., 1990. Magyarország kistájainak katasztere I– II. (An inventory of microregions in Hungary vol. I–II). Magyar Tudományos Akadémia Földrajztudományi Kutatóintézet, Budapest.
- Mészáros E., Schweitzer F., eds., 2002. Magyar tudománytár – Föld, víz, levegő (Hungarian Science vol. 1. – Earth, water, air). Akadémiai Kiadó, Budapest, 125–129.
- Minár J., Evans I.S., 2008. Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology 95, 236–259. NASA JPL 2013.
- NASA Shuttle Radar Topography Mission Global 1 arc second Version 3. 45°–48°N, 16°–21°E. NASA LP DAAC, 10.12.2015. – https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003
- OpenStreetMap contributors 2015. Planet dump. [Data file from 08.01.2016. of database 160104.osm]. Retrieved from http://planet.openstreetmap.org
- Pécsi M., 1977. Geomorphological map of the Carpathian and Balkan Regions (1:1,000,000). Studia Geomorphologica Carpatho-Balcanica 11, 3–31.
- Pécsi M., 1984. Magyarország domborzati formáinak minősítése (Assessment of landforms in Hungary). Földrajzi Közlemények (Geographical Review) 32, 2, 81–94.
- Pécsi M., 1996. Geomorphological regions of Hungary. Budapest, 1996. Geographical Research Institute, Hungarian Academy of Sciences, Budapest.
- Pécsi M., Somogyi S., 1967. Magyarország természeti földrajzi tájai és geomorfológiai körzetei (Physical geographical landscapes and geomorphological regions of Hungary). Földrajzi Közlemények (Geographical Review) 15, 4, 285–304.
- Pike R.J., Acevedo W., Card D.H., 1989. Topographic grain automated from digital elevation models. Proceedings, Auto-Carto 9, ASPRS/ACSM Baltimore MD, 2–7 April 1989, 128–137.
- Pike R.J., Evans I.S., Hengl T., 2009. Geomorphometry: a brief guide. [in:] T. Hengl, H.I. Reuter (eds.), Geomorphometry – Concepts, Software, Applications. Developments in Soil Science, vol. 33, Elsevier, Amsterdam, 3–30.
- Prinz Gy., 1936. Magyarország tájföldrajza (Geography of Hungarian landscapes). [in:] L. Bartucz, J. Cholnoky, P. Teleki, Gy. Prinz (eds.), Magyar fold, Magyar faj I. (Hungarian area, Hungarian nation vol. I.). Királyi Magyar Egyetemi Nyomda, Budapest, 295–298.
- Schweitzer F. 2009. Relief and Landscapes. [in:] K. Kocsis, F. Schweitzer (eds.), Hungary in Maps. Hungarian Academy of Sciences, Geographical Research Institute, Budapest, 38–44.
- Sebe K., Csillag G., Ruszkiczay-Rüdiger Zs., Fodor L., Thamó-Bozsó E, Müller P., Braucher R., 2011. Wind erosion under cold climate: A Pleistocene periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary). Geomorphology 134 (1–3), 470–482.
- Smith J., Paron P., Griffiths J.S. (eds.), 2011. Geomorphological Mapping – Methods and Applications. Elsevier Science.
- Stepinski T.F., Jasiewicz J., 2011. Geomorphons – a new approach to classification of landforms.[in:] T. Hengl, I.S. Evans, J.P. Wilson, M. Gould (eds.), Proceedings of Geomorphometry. Redlands, 109–12.
- Stevenson J.A., Sun X., Mitchell N.C., 2010. Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology 114, 238–252.
- Telbisz T., 2009. Digitális domborzatelemzési módszerek alkalmazása karsztos területek geomorfológiai térképezésében (Using digital terrain analysis for the geomorphological mapping of karstic areas). Geoinformatika és domborzatmodellezés 2009 (Geoinformatics and digital terrain modelling 2009), 1–13.
- van Asselen S., Seijmonsbergen A.C., 2006. Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology 78, 309–320.
- Weiss A.D., 2001. Topographic Position and Landforms Analysis. Poster Presentation, ESRI USER Conference, San Diego, California.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77cab3de-e6e4-42cf-b407-75e1427e9c9d