PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dependence of Quantitative and Qualitative Parameters of Radish Yield on Contents of Ammonium and Nitrate Nitrogen in Soil Substrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plant nutrition is one of the significant factors determining the quantity and quality of crop production. Therefore, the objective of the experiment was to express the dependence numerically (statistically) of the selected yield parameters of radish on the contents of ammonium and nitrate nitrogen occurring in the soil growing medium in different periods of radish vegetation. The experiment was performed in the plastic greenhouse with aeration and irrigation manually operated. It had three variants and was established by the method of random plot arrangement with a threefold repetition of variants. The variants differed in the quantity of vermicompost in the soil growing medium (0%, 10%, 20%). The achieved results indicate that the yield parameters of radish were more dependent on the contents of N–NO3- than on the contents of N–NH4+ occurring in the soil substrate. The quantity of N–NO3-, occurring in the soil growing medium in the initial period of the growing season, had impact on the quantity of yield. The quantity of N–NO3-, present in the soil substrate in the second half of the growing season, had impact mainly on the content of vitamin C and content of nitrates in roots. As the N–NO3- content of the soil growing medium increased, the content of nitrates was increased and content of vitamin C was decreased. The dependence between the contents of N–NH4+ in the substrate and root yield was insignificant. The quantity of radish root yield depended predominantly on the contents of Nin occurring in the soil growing medium at the beginning of the growing season. On the contrary, the content of nitrates and vitamin C (influencing the yield quality) was dependent mostly on the contents of Nin present in the soil substrate in the second half of radish growing season. Along with the increase in the content of Nin, the root yield and the content of nitrates in roots also increased, while the content of vitamin C was decreased.
Słowa kluczowe
Rocznik
Strony
68--77
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Slovak University of Agriculture in Nitra, Department of Agrochemistry and Plant Nutrition, Tr. A Hlinku 2, 949 01 Nitra, Slovakia
  • University of Agriculture in Kraków, Department of Agricultural and Environmental Chemistry, 21 A. Mickiewicza Ave., 31–120 Kraków, Poland
  • University of Agriculture in Kraków, Institute of Plant Biology and Biotechnology, Al. 29 Listopada 54, 31 425 Kraków, Poland
autor
  • Mendel University in Brno, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Zemědělská 1, Brno, CZ-613 00, Czech Republic
  • Slovak University of Agriculture in Nitra, Department of Plant Physiology, Tr. A Hlinku 2, 949 01 Nitra, Slovakia
  • Slovak University of Agriculture in Nitra, Department of Chemistry, Tr. A Hlinku 2, 949 01 Nitra, Slovakia
Bibliografia
  • 1. Ball G.F.M. 1998. Vitamin C. In: Bioavailability and Analysis of Vitamins in Foods. Springer, Boston, MA. pp. 517–554. DOI: 10.1007/978–1–4899–3414–7_15
  • 2. Bremner J.M. 1960. Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, 55, 1–23.
  • 3. Cox W.J., Reisenauer H.M. 1973. Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant and Soil, 38(2), 363–380. DOI: 10.10007/BF00779019
  • 4. Chessin D.A., Hicks J.R. 1987. The effect of nitrogen fertilizer, herbicides and cultivar on nitrogen components of carrot roots. Scientia Horticulturae, 33(1–2), 67–73. DOI: 10.1016/0304–4238(87)90033–1
  • 5. Dziadowiec H., Gonet S.S. 1999. Methodical guide-book for soil organic matter studies. Warszawa: Polish Society of Soil Science, pp. 65. ISSN 0860–1313; II/16
  • 6. Elwan M.W.M., El-Hamed K.E.A. 2011. Influence of nitrogen form, growing season and sulphur fertilization on yield and the content of nitrate and vitamin C of broccoli. Scientia Horticulturae, 127(3), 181–187. DOI: 10.1016/j.scienta.2010.09.017
  • 7. Fageria N.K., Baligar V.C. 2005. Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy, 88, 97–185. DOI: 10.1016/S0065–2113(05)88004–6
  • 8. Hubáček J., Bernatzik K. 1979. Determination of nitrates in soil, plants and feeds Methodologies of implementing research results into practice. Bratislava: MP SSR. 52 pp.
  • 9. Jin Z., Chen C., Chen X., Jiang F., Hopkins I., Zhang X., Han Z., Billy G., Benavides J. 2019. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China. Field Crops Research, 232, 77–87. DOI: 10.1016/j.fcr.2018.12.013
  • 10. Kováčik P., Jančovič J. 2001. Deficiency symptoms of nitrogen, phosphorus, potassium and sulphur in radish plants. Acta fytotechnica et zootechnica, 4(2), 38–42.
  • 11. Kováčik P., Jančovič J., Tomáš J. 2006. Nitrogen fertilization of spring barley at tillering stage. Agriculture (Poľnohospodárstvo), 52(2), 77–86. https://www.agriculture.sk/fileadmin/agriculture/files/2006/Issue%202/2–2006–77–86.pdf
  • 12. Kováčik P. 2009. Výživa a systémy hnojení rostlin. České Budějovice: Kurent, s. r. o., 109 pp. ISBN 978–80–87111–16–1
  • 13. Kováčik P., Žofajová A., Šimanský V., Halászová K. 2016. Spring barley yield parameters after lignite, sodium humate and nitrogen utilization. Agriculture (Poľnohospodárstvo), 62(3), 80–89. DOI: 10.1515/agri-2016–0009
  • 14. Kováčik P., Ryant P. 2019. Agrochemistry (principles and practice). Nitra: SUA in Nitra, 358 pp. ISBN 978–80–55–2051–2
  • 15. Lassaletta L., Billen G., Grizzetti B., Anglade J., Garnier J. 2014. 50. years trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 9(10), 9 pp. article 105011. DOI: 10.1088/1748–9326/9/10/105011
  • 16. Liu Q., Ma H., Lin X., Zhou X., Zhao Q. 2019. Effects of different types of fertilizers application on rice grain quality. Chilean Journal of Agricultural Research, 79(2), 202–209. DOI: 10.4067/S0718–58392019000200202
  • 17. Mandić V., Krnjaja V., Tomić Z., Bijelić Z., Simić A., Ruzić-Muslić D., Gogić M. 2015. Nitrogen fertilizer influence on wheat yield and use efficiency under different environmental conditions. Chilean Journal of Agricultural Research, 75(1), 92–97. DOI: 10.4067/S0718–58392015000100013
  • 18. Lominadze S., Nakashidze N. 2016. The influence of nitrogen fertilizers on nitrate accumulation in leaves of orange Washington Navel. Annals of Agrarian Science, 14(3), 233–236. DOI: 10.1016/j.aasci.2016.07.008
  • 19. Mehlich A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communication in Soil Science and Plant Analysis, 15(12), 1409–1416. DOI: 10.1080/00103628409367568
  • 20. Marschner H. 2005. Mineral nutrition of higher plants. London: Elsevier Academic Press. 889 pp. ISBN 0–12–473543–6
  • 21. Melino V.J., Soole K.L., Ford Ch.M. 2009. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biology, 9, 145, 14 pp. DOI: 10.1186/1471–2229–9–145
  • 22. Mueller N.D., Gerber J.S., Johnston M., Ray D.K., Ramankutty N., Foley J.A. 2012. Closing yield gaps through nutrient and water management. Nature, 490, 254–257. DOI: 10.1038/nature11420
  • 23. Özer H., Polat T., Öztürk E. 2004. Response of irrigated sunflower (Helianthus annuus L.) hybrids to nitrogen fertilization: growth, yield and yield components. Plant, Soil and Environment, 50(5), 205–211.
  • 24. Ponder A., Hallmann E. 2020. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. Journal of Food Composition and Analysis, 87, 103429. DOI: 10.1016/j.jfca.2020.103429
  • 25. Prasad R., Shivay Y. S. 2016. Deep placement and foliar fertilization of nitrogen for increased use efficiency – An overview. Indian Journal of Agronomy, 61(4), 420–424.
  • 26. Rodrigues M.Â., Coelho V., Arrobas M., Gouveia E., Raimundo S., Correia C.M., Bento A. 2019. The effect of nitrogen fertilization on the incidence of olive fruit fly, olive leaf spot and olive anthracnose in two olive cultivars grown in rainfed conditions. Scientia Horticulturae, 256, 108658. DOI: 10.1016/j.scienta.2019.108658
  • 27. Smoleń S., Sady W. 2009a. The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of sugars, carotenoids and phenolic compounds in carrot (Daucus carota L.). Scientia Horticulturae, 120(3), 315–324. DOI: 10.1016/j.scienta.2008.11.029
  • 28. Smoleń S., Sady W. 2009b. The effect of various nitrogen fertilization and foliar nutrition regimes on the concentrations of nitrates, ammonium ions, dry matter and N-total in carrot (Daucus carota L.) roots. Scientia Horticulturae, 119(3), 219–231. DOI: 10.1016/j.scienta.2008.07.030
  • 29. Šlosár M., Čekey N., Uher A., Balogh Z. 2009. The influence of nitrogen fertilization on the yield and nitrate cumulation in the broccoli. Acta Horticulturae et Regiotecturae, 12(1), 14–17.
  • 30. Uher A., Mezeyová I., Hegedűsová A., Šlosár M. 2017. Impact of nutrition on the quality and quantity of cauliflower florets. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 113–119. DOI: 10.5219/723
  • 31. Zachar D. 2006. Human nutrition I. General part. Zvolen: TU vo Zvolene, pp. 265.
  • 32. Zhang X., Davidson E., Mauzerall D., Searchinger T., Dumas P., Shen Y. 2015. Managing nitrogen for sustainable development. Nature, 528, 51–59. DOI: 10.1038/nature15743
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77c8c28d-d855-44ed-a54e-4a5596cc7412
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.