Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A concept of magnetic separation of regolith for production of lunar aggregate is presented in the paper. Future construction effort on the Moon will require significant amounts of concrete-like composites. The authors formulate a hypothesis that magnetic separation of regolith would be a very efficient beneficiation procedure solving multiple civil engineering problems associated with properties of raw lunar soil. For the research program, 10 lunar soil simulants were used. The magnetic separation was feasible in majority of cases. Acquired lunar aggregate would be useful for both concrete-like composite production and covering the surface of a habitat. The aims of future research are pointed out in the paper.
Słowa kluczowe
Rocznik
Strony
203--213
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
- Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
Bibliografia
- Arslan, H., Sture, S. and Batiste, S. (2008) ‘Experimental simulation of tensile behavior of lunar soil simulant JSC-1’, Materials Science and Engineering A, 478(1-2). doi: 10.1016/j.msea.2007.05.113.
- Bednarz, S. et al. (2013) ‘Research of formed lunar regolith analog AGK-2010’, Archives of Mining Sciences, 58(2). doi: 10.2478/amsc-2013-0037.
- Benaroya, H. and Bernold, L. (2008) ‘Engineering of lunar bases’, Acta Astronautica. doi: 10.1016/j.actaastro.2007.05.001.
- Bentley, M. S. et al. (2009) ‘In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity’, Planetary and Space Science, 57(12). doi: 10.1016/j.pss.2009.07.013.
- Cesaretti, G. et al. (2014) ‘Building components for an outpost on the Lunar soil by means of a novel 3D printing technology’, Acta Astronautica. doi: 10.1016/j.actaastro.2013.07.034.
- Ferrone, K. L., Taylor, A. B. and Helvajian, H. (2022) ‘In situ resource utilization of structural material from planetary regolith’, Advances in Space Research, 69(5), pp. 2268-2282. doi: 10.1016/J.ASR.2021.12.025.
- Grugel, R. N. (2012) ‘Integrity of sulfur concrete subjected to simulated lunar temperature cycles’, Advances in Space Research, 50(9). doi: 10.1016/j.asr.2012.06.027.
- Heiken, G. H. and Vaniman, D. T. (1990) ‘Characterization of Lunar Ilmenite Resources’, Proceedings of the 20th Lunar and Planetary Science Conference.
- Hill, E. et al. (2007) ‘Apollo sample 70051 and high- and low-Ti lunar soil simulants MLS-1A and JSC-1A: Implications for future lunar exploration’, Journal of Geophysical Research E: Planets, 112(2). doi: 10.1029/2006JE002767.
- Just, G. H. et al. (2020) ‘Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilisation (ISRU) and recommendations for future excavation experiments’, Planetary and Space Science, 180. doi: 10.1016/j.pss.2019.104746.
- Katzer J. and Kobaka J. (2009a) ‘Influence of fine aggregate grading on properties of cement composite’, Silicates Industriels, 74 (1-2), pp. 9 -14.
- Katzer, J. and Kobaka, J. (2009b) ‘Combined non-destructive testing approach to waste fine aggregate cement composites’, Science and Engineering of Composite Materials, 16(4).
- Katzer, J., Kobaka, J. and Ponikiewski, T. (2020) ‘Influence of crimped steel fibre on properties of concrete based on an aggregate mix of waste and natural aggregates’, Materials, 13(8). doi: 10.3390/MA13081906.
- Kobaka, J., Katzer, J. and Zarzycki, P. K. (2019) ‘Pilbara craton soil as a possible lunar soil simulant for civil engineering applications’, Materials. doi: 10.3390/ma122333871.
- Kong, W. G., Jolliff, B. L. and Wang, A. (2013) ‘Ti distribution in grain-size fractions of Apollo soils 10084 and 71501’, Icarus, 226(1). doi: 10.1016/j.icarus.2013.07.007.
- Makarious, A. S. et al. (1989) ‘Radiation distribution through ilmenite-limonite concrete and its application as a reactor biological shield’, International Journal of Radiation Applications and Instrumentation. Part, 40(3). doi: 10.1016/0883-2889(89)90158-5.
- Momi, J. et al. (2021) ‘Study of the rheology of lunar regolith simulant and water slurries for geopolymer applications on the Moon’, Advances in Space Research, 68(11). doi: 10.1016/j.asr.2021.08.037.
- Pinheiro, A. S. et al. (2013) ‘Thermal characterization of glasses prepared from simulated compositions of lunar soil JSC-1A’, Journal of Non-Crystalline Solids, 359(1). doi: 10.1016/j.jnoncrysol.2012.09.027.
- Ray, C. S. et al. (2010) ‘JSC-1A lunar soil simulant: Characterization, glass formation, and selected glass properties’, Journal of Non-Crystalline Solids. doi: 10.1016/j.jnoncrysol.2010.04.049.
- Rochette, P. et al. (2010) ‘Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samples’, Earth and Planetary Science Letters, 292(3-4). doi: 10.1016/j.epsl.2010.02.007.
- Samin, A.J. (2018), A review of radiation-induced demagnetization of permanent magnets, Journal of Nuclear Materials, 503, pp. 42-55. doi:10.1016/j.jnucmat.2018.02.029.
- Schuler, J.M., Smith, J.D., Mueller, R.P., Nick, A.J. (2019) ‘RASSOR, the reduced gravity excavator’, Lunar ISRU 2019, Developing a New Space Economy Through Lunar Resources and Their Utilization, 5061.
- Seweryn, K. et al. (2014) ‘Determining the geotechnical properties of planetary regolith using Low Velocity Penetrometers’, Planetary and Space Science, 99. doi: 10.1016/j.pss.2014.05.004.
- Seweryn, K., Paśko, P. and Visentin, G. (2019) ‘The Prototype of Regolith Sampling Tool Dedicated to Low Gravity Planetary Bodies’, Mechanisms and Machine Science, pp. 2711-2720. doi: 10.1007/978-3-030-20131-9_268.
- Sik Lee, T., Lee, J. and Yong Ann, K. (2015) ‘Manufacture of polymeric concrete on the Moon’, Acta Astronautica, 114. doi: 10.1016/j.actaastro.2015.04.004.
- Song, L. et al. (2020) ‘Vacuum sintering behavior and magnetic transformation for high-Ti type basalt simulated lunar regolith’, Icarus, 347. doi: 10.1016/j.icarus.2020.113810.
- Taylor, L. A., Pieters, C. M. and Britt, D. (2016) ‘Evaluations of lunar regolith simulants’, Planetary and Space Science, 126. doi: 10.1016/j.pss.2016.04.005.
- Toutanji, H. A., Evans, S. and Grugel, R. N. (2012) ‘Performance of lunar sulfur concrete in lunar environments’, Construction and Building Materials, 29. doi: 10.1016/j.conbuildmat.2011.10.041.
- Wallace, W. T. et al. (2009) ‘Lunar dust and lunar simulant activation and monitoring’, Meteoritics and Planetary Science, 44(7). doi: 10.1111/j.1945-5100.2009.tb00781.x.
- Wang, K. tuo et al. (2017) ‘Lunar regolith can allow the synthesis of cement materials with near-zero water consumption’, Gondwana Research, 44. doi: 10.1016/j.gr.2016.11.001.
- Zarzycki, P. K. and Katzer, J. (2019) ‘Multivariate Comparison of Lunar Soil Simulants’, Journal of Aerospace Engineering. doi: 10.1061/(asce)as.1943-5525.0001075.
- Zarzycki, P. K. and Katzer, J. (2020) ‘A proposition for a lunar aggregate and its simulant’, Advances in Space Research. doi: 10.1016/j.asr.2020.03.032.
- Zhang, T. et al. (2021) ‘The technology of lunar regolith environment construction on Earth’, Acta Astronautica, 178. doi: 10.1016/j.actaastro.2020.08.039.
- Zheng, Y. et al. (2009) ‘CAS-1 lunar soil simulant’, Advances in Space Research, 43(3). doi: 10.1016/j.asr.2008.07.006.
- Zhou, S. et al. (2021) ‘Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition’, Acta Astronautica, 189. doi: 10.1016/j.actaastro.2021.08.039.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77c3a5e0-7db4-46c1-847a-cea6fb7485c1