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Diagnosis strategy for micro-computer controlled 
straight electro-pneumatic braking system using fuzzy set and 

dynamic fault tree

Wykorzystanie zbiorów rozmytych i dynamicznego drzewa 
uszkodzeń w strategii diagnostyki elektro-pneumatycznego 

układu hamulcowego sterowanego za pomocą mikrokomputera
In this paper, a new diagnosis strategy for micro-computer controlled straight electro pneumatic braking system is developed to 
improve the diagnostic efficiency, which makes full use of some reliability theories and fuzzy set techniques. Specifically, it adopts 
expert elicitation and fuzzy set theory to evaluate the failure rate of the basic events for the braking system, and uses a dynamic 
fault tree model to capture the dynamic failure mechanisms and calculates some reliability results by mapping a dynamic fault 
tree into an equivalent Bayesian network (BN). Furthermore, the schemes are proposed to update the diagnostic importance fac-
tor (DIF) and the cut sets according to the sensors data. Finally, an efficient diagnostic algorithm is developed based on these 
reliability results to guide the maintenance crew to diagnose the braking system. The experimental results demonstrate that the 
proposed method can locate the fault of the braking system with less diagnosis cost.

Keywords: Diagnosis strategy, Fuzzy set, Dynamic fault tree, Expected diagnosis cost.

W niniejszej pracy, opracowano nową strategię diagnostyki elektro-pneumatycznego układu hamulcowego sterowanego za pomo-
cą mikrokomputera Celem badań była poprawa efektywności diagnostycznej. Strategię oparto na wybranych teoriach niezawod-
ności oraz technikach zbiorów rozmytych. W szczególności, strategia wykorzystuje ocenę ekspercką oraz teorię zbiorów rozmytych 
do określania intensywności uszkodzeń dla podstawowych zdarzeń zachodzących w układzie hamulcowym oraz posługuje się 
modelem dynamicznego drzewa uszkodzeń aby uchwycić dynamiczne mechanizmy uszkodzeń. Za pomocą przedstawionej strate-
gii oblicza się także wyniki analiz niezawodnościowych poprzez mapowanie dynamicznego drzewa błędów do równoważnej sieci 
bayesowskiej (BN). Ponadto w artykule zaproponowano schematy służące do aktualizacji czynnika ważności diagnostycznej (DIF) 
oraz przekrojów niezdatności zgodnie z danymi z czujników. Wreszcie, w oparciu o uzyskane wyniki analiz niezawodnościowych, 
opracowano wydajny algorytm diagnostyczny, który zawiadamia załogę konserwatorką o konieczności przeprowadzenia diagno-
styki układu hamulcowego. Wyniki doświadczeń pokazują, że proponowana metoda pozwala na zlokalizowanie usterki układu 
hamulcowego przy mniejszych kosztach diagnozy.

Słowa kluczowe: Strategia diagnostyki, zbiór rozmyty, dynamiczne drzewo błędów, przewidywany koszt diagno-
zowania

1. Introduction

The micro-computer controlled straight electro-pneumatic brak-
ing system is a key system to ensure the safe operation of urban rail 
transit. Its performance has been greatly improved with wide ap-
plication of high technology. On the other hand, its complexity of 
technology and structure increasing significantly raise challenges in 
system diagnosis and maintenance. These challenges are displayed 
as follows: (1) lack of sufficient fault data. Fault data integrity has 
significant influence on the system diagnosis efficiency. However, 
it is very difficult to obtain mass fault samples which need lots of 
case studies in practice due to some reasons. One reason is imprecise 
knowledge in early stage of new product design. The other reason is 
the changes of the environmental conditions which may cause that the 
historical fault data can not represent the future failure behaviours. (2) 
Failure dependency of components. The micro-computer controlled 
straight electro-pneumatic braking system adopts many redundancy 
units and fault tolerance techniques to improve its reliability. So the 
behaviours of components in the system and their interactions, such 
as failure priority, sequentially dependent failures, functional depend-
ent failures, and dynamic redundancy management, should be taken 

into consideration. (3) High level of uncertainty. The micro-computer 
controlled straight electropneumatic braking system is usually oper-
ated in a dynamic environment and is greatly affected by the techni-
cal, human and operational malfunctions that may lead to hazardous 
incidents. Aiming at these issues, many efficient diagnosis methods 
have been proposed. Assaf et al. proposed a fault tree based approach 
to determine the diagnosis order of components using DIF, which 
can, to some extent alleviate fault data acquisition bottleneck [1, 17]. 
However, this method determines the diagnostic sequence only by 
components’ DIF, and usually causes minimal cut sets with a smaller 
DIF to be checked first, thereby influencing the diagnosis result. Tao 
et al. presented an improved method for system fault diagnosis which 
makes the overall consideration of components’ DIF and minimal cut 
sets’ DIF [22]. However, these diagnosis methods are based the static 
fault tree which cannot model dynamic fault behaviours. For this pur-
pose, Duan et al. proposed a hybrid diagnosis method using dynamic 
fault tree and discrete-time BN [15]. In many cases, when a system 
fails, additional evidence is observed too, which may be collected 
from sensors. Hence, Assaf et al. put forward a method to incorpo-
rate evidence data from sensors into the diagnostic process to further 
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improve the diagnosis efficiency [2]. But, the solution for dynamic 
fault tree was based on Markov model which is ineffective in handing 
larger dynamic fault tree and modelling power capabilities. What’s 
more, it cannot incorporate the evidence information into the reason-
ing and can’t update the components’ posterior failure probability 
based on the evidence data from sensors, which affects the diagnostic 
accuracy. In the application of fault tree analysis mentioned above, 
the failure probability of basic events must be known. In addition, the 
failure rates of the system components are considered as crisp values. 
However, in practice, the failure rates of the system components are 
imprecise, deficient or vague in the system modelling. To overcome 
these difficulties and limitations in fault tree analysis, Fuzzy fault tree 
has been proposed, which employs fuzzy set and possibility theory, 
and deals with ambiguous, qualitatively incomplete, ill-defined and 
inaccurate information [3, 5, 12]. However, these approaches use 
the static fault tree to model the system fault behaviours and can not 
handle the challenge (2).So fuzzy dynamic fault tree (FDFT) analy-
sis has been introduced [10], which takes into account not only the 
combination of failure events but also the order in which they occur. 
But the solution for FDFT is Markov chains (MC) based approach, 
which has the infamous state space explosion problem and can not 
incorporate sensors data into diagnosis process. Usually, BN is one of 
the most efficient models in the uncertain knowledge and reasoning 
field. It has been used to locate the system fault in many fields [4, 13]. 
However, the construction of BN model usually needs lots of fault 
data, which are very difficulty to obtain in reality. Motivated by the 
problems mentioned above, this paper presents a diagnosis strategy 
for micro-computer controlled straight electro-
pneumatic braking system based on fuzzy set 
and dynamic fault tree. It pays special attention 
to meeting above three challenges. We adopt ex-
pert elicitation and fuzzy set theory to deal with 
insufficient fault data and uncertainty problem 
by treating failure rate as fuzzy numbers. Fur-
thermore, we use a dynamic fault tree model to 
capture the dynamic behaviours of the braking 
system failure mechanisms and calculate some 
reliability results by mapping a dynamic fault 
tree into an equivalent BN in order to avoid the 
infamous state space explosion problem. In ad-
dition, we present a new method to incorporate 
sensors data into the system diagnosis to opti-
mize the diagnosis process. The objective of 
this paper is to present an efficient diagnosis 
strategy for micro-computer controlled straight 
electro-pneumatic braking system using fuzzy 
set and dynamic fault tree. The rest sections 
of this paper are organized as follows: Section 
2 provides a brief introduction on the braking 
system and its dynamic fault tree model. In sec-
tion 3 describes estimation of failure rate for the 
basic events. Section 4 presents a novel diagno-
sis strategy which makes use of the qualitative structure, quantitative 
information and sensors data. The outcomes of the research and future 
research recommendations are presented in the final section.

2. Dynamic fault tree of braking system

The micro-computer controlled straight electro-pneumatic brak-
ing system has been the first choice braking system for urban rail tran-
sit, which has the advantages of the swift response, flexible operation, 
combined application with electric braking and anti-slip control.  It is 
an electro-mechanic control system, and achieves its function by the 
coordination of electrical circuit part and air circuit part. Specifically, 
it includes power unit for braking system, service braking instruc-

tion processing unit, service braking control unit, emergency brak-
ing instruction processing unit, air supply unit and braking execution 
unit. The service braking instruction processing unit includes braking 
controller, logic controller and braking instruction line, which gener-
ates the service braking signals and transmits them into the braking 
control unit of every vehicle; service braking control unit receives 
service braking signals, calculates service braking force and detects 
braking system state. It consists of microcomputer brake control unit 
(MBCU) and several valves; Four modules (empty weight valves, 
under compaction switch, emergency braking button and emergency 
braking switch) form the emergency braking instruction processing 
unit which generates the emergency braking signals and transmits 
them into the emergency braking control unit; air supply unit offers 
air for braking system and thus a train is actuated to brake by braking 
execution unit. High coupling degree together with complicated logic 
relationships exists in these modules. Lots of current research about 
the micro-computer controlled straight electro-pneumatic braking 
system has focused on its reliability analysis using a reliability block 
diagram [14] or static fault tree [21]. It attempts to find out the weak-
est part of the system and then presents some reasonable solutions to 
improve its reliability. Fig. 1 shows a dynamic fault tree for service 
braking failure of a micro-computer controlled straight electro-pneu-
matic braking system. Any one of braking control failure, air supply 
unit failure, braking control output failure and braking execution unit 
failure will result in service braking failure. The failure events and dif-
ferent components of the braking system are represented by different 
symbols which are presented in Table 1.

3. Estimation of failure rates for braking system

In order to evaluate the reliability result for the braking system, 
failure rates of the basic events must be known. However, it is very 
difficult to estimate a precise failure rate due to insufficient data, or 
vague characteristic of the events, especially for the new equipments. 
In this study, the expert elicitation through several interviews and 
questionnaires and fuzzy set theory are used to determine the failure 
rates of the basic events.

3.1.	 Experts evaluation
Experts are selected from different fields, such as design, installa-

tion, operation, maintenance and management of the braking system, 
to judge failure rates of the basic events. They evaluate them in quali-

Fig. 1. A dynamic fault tree for service braking failure of braking system
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tative natural languages based on their experiences and knowledge 
about the braking system. The granularity of the set of linguistic val-
ues usually used in engineering fields is from four to seven terms. In 
the paper, the component failure rates are defined by seven linguistic 
values, i.e. very high, high, reasonably high, medium, reasonably low, 
low and very low.

3.2.	 Converting linguistic terms to fuzzy numbers

After experts’ evaluation, a numerical approximation method 
is used to systematically map linguistic terms into triangular fuzzy 
numbers. Each predefined linguistic value has a corresponding math-
ematical representation. The shapes of the membership functions to 
mathematically represent linguistic variables in engineering systems 
are shown in Fig. 2. To eliminate the bias coming from an expert, 
eleven experts are asked to justify how likely a basic event will fail in 
the system under investigation. So, it is necessary to aggregate their 
opinions into a single one. There are many methods to combine fuzzy 
numbers. A popular approach is the linear opinion pool [7]:

	 M A i mi j ij
j

n
= =

=
∑ω

1
1 2 3, , , ,..., 	 (1)

where m is the number of basic events; Aij is the linguistic expression 
of a basic event i given by expert j; n is the number of the experts; ωij 
is a weighting factor of the expert j and Mi represents combined fuzzy 
number of the basic event i.

Usually, an α-cut addition followed by the arithmetic averag-
ing operation is used for aggregating more membership functions of 
fuzzy numbers of different types. The membership function of the 
total fuzzy numbers from n experts’ opinion can be computed as fol-
lows:
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n
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where fn(x) is the membership function of a fuzzy number from expert 
n and f (z) is the membership function of the total fuzzy numbers.

3.3. Calculating fuzzy fault rates of the basic events

Obviously, the final ratings of the basic events are also fuzzy numbers 
and cannot be used for fault tree analysis because they are not crisp 
values. So, fuzzy number must be converted to a crisp score, named 
as fuzzy possibility score (FPS) which represents the most possibility  
that an expert believes occurring of a basic event. This step is usually 
called defuzzification. There are several defuzzification techniques 
[8]: area defuzzification technique, the left and right fuzzy ranking 
defuzzification technique, the centroid defuzzification technique, the 
area between the centroid point and the original point defuzzification 
technique, and the centroid based Euclidean distance defuzzification 
technique. In this paper, an area defuzzification technique is used to 
map the fuzzy numbers into FPS. If (a, b, c; 1) is a normal triangular-
fuzzy number, then its area defuzzification technique is as follows: 

FPS a b b c b a c b b c ab
c

=
+ + + − − − + −

−
( ) ( )( ) ( )

( )
2 2 2 3 2 3 4

18

2

a
    (3)

The event fuzzy possibility score is then converted into the cor-
responding fuzzy failure rate (FFR), which is similar to the failure 
rate. Based on the logarithmic function proposed by Onisawa [18], 
which utilizes the concept of error possibility and likely fault rate, 
the fuzzy failure rate can be obtained by the following equation (4). 

Table 1.	 The basic events of the braking system

Node 
symbol Description Node 

symbol Description

X1 Microcomputer 
brake control unit X14 Air cylinder 1

X2 EP brake valve X15 Air cylinder 2

X3 Brake line failure X16 Large membrane

X4 Power board of pulse 
width modulation X17 Small membrane

X5 Digital input board X18 High pressure oil 
seal ring 1

X6 Input/output board X19 Low pressure oil seal 
ring 1

X7 Modulation board X20 Left clamp 1

X8 Digital output board X21 Left clamp 2

X9 Pulse width modula-
tion line X22 High pressure oil 

seal ring 1

X10 Multifunction Vehicle 
Bus 1 failure X23 Low pressure oil seal 

ring 2

X11 Multifunction Vehicle 
Bus 2 failure X24 Right clamp 1

X12 Compactor 1 failure X25 Right clamp 2

X13 Compactor 2 failure X26 Relay valve

Fig. 2. Fuzzy numbers used for representing liguistic value

Table 2.	 The FPS and FFR of basic events

Basic events
Fuzzy numbers

FPS FFR
a b c

X1 0.1498 0.2499 0.4094 6.98e-2 3.5e-6

X2 0.1991 0.2201 0.3584 5.88e-2 1.6e-6

X3,X9, X10,X11 0.1101 0.2099 0.2572 5.04e-2 7.6e-7

X4 0.0996 0.2005 0.1999 4.44e-2 4.1e-7

X5 0.1802 0.3403 0.9097 9.61e-2 1.4e-5

X6 0.1151 0.2148 0.2844 5.33e-2 1.0e-6

X7 0.1397 0.2301 0.8426 9.07e-2 1.1e-5

X8 0.1698 0.3204 0.5534 8.63e-2 8.9e-6

X12,X13 0.1651 0.3103 0.5744 8.58e-2 8.7e-6

X14,X15 0.1549 0.2801 0.5688 8.16e-2 7.1e-6

X16,X17 0.1131 0.2128 0.2224 4.93e-2 6.8e-7

X18,X19,X22,X23 0.1851 0.6502 0.9716 1.31e-1 4.8e-5

X20,X21,X24,X25 0.1801 0.5499 0.9526 1.24e-1 3.8e-5

X26 0.1599 0.3002 0.5666 8.37e-2 7.8e-6



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 2, 2014220

Science and Technology

Table 2 shows the fuzzy failure rates of the basic events for the brak-
ing system.
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4. Diagnosis strategy

4.1.	 Calculating reliability data

After the dynamic fault tree is constructed and all basic events 
have their corresponding fault rates, reliability results of the braking 
system can be calculated. We use the zero-suppressed binary decision 
diagram (ZBDD) to generate all minimal cut sets (MCS) [19]. Firstly, 
it converts the dynamic fault tree into the static fault tree by separat-
ing logic constraints and timing constraints. Secondly, this algorithm 
generates the minimal cut sets of the resulting static fault tree using 
some set operations as follows:

	
, ,1 2 1 1 2 2

1 2 1 2 3, ,
c c cS S S D S S D S S

U D D P D D D U P

= = − = −

= = ∗ = −





	 (5)

where S1and S2 are the input of MCS-AND and MCS-OR. Sc, D, 
U, and P respectively represent set intersection, set difference, set 
union, and set product.

The MCS generation algorithm is executed recursively during the 
depth-first left-most traversal of a fault tree. It first generates the MCS 
of the inputs of a connection gate, and then performs a serial of set 
operations to combine the MCS of the inputs into the MCS of the 
output of the connection gate. Finally, it expands each minimal cut 
set to minimal cut sequences by considering the timing constraints. 
For convenience, we define the sum of all minimal cut sets as the 
characteristic function of the system. The characteristic function of 
the braking system is 

1 26 2 12 13 18 23 19 24 25
18 24 25 19 23 19 22 23 20 21
14 15 3 5 6 3 4 3 7 8 22 20 21
18 22 16 17 3 9 10 11+ 24 20 21 25

F X X X X X X X X X X
X X X X X X X X X X
X X X X X X X X X X X X X
X X X X X X X X X X X X

= + + + + +
+ + + +
+ + + + +
+ + +

  (6)

Quantitative analysis for dynamic fault tree is used to calculate 
the importance parameters. DIF is the corner stone of our method-
ology and provides an accurate measure of components’ relevance 
from a diagnosis perspective. The DIF is defined conceptually as the 
probability that an event has occurred given the top event has also 
occurred.

	
( ), ( )

nMCS n CDIF P MCS S DIF P C S= =
	

(7)

MCSn: nth minimal cut sets, C: a component in system S

In order to avoid infamous state space explosion problem we cal-
culate the DIF by mapping a fault tree into an equivalent discrete-time 
BN (DTBN). In addition, DTBN can deal with the evidence data and 
update the DIF after receiving them. We divide the mission time into 
n+1intervals. Each node variable has a finite number n+1 of states. 
The n first states divide the time interval [0, T] (T is the mission time) 

into n equal intervals, and the last state n+1 represents the time in-
terval [T,∞]. Random variables X is in state n+1 means that the cor-
responding basic component or gate output did not fail during the 
mission time [6]. In the paper, we use n=2 to balance the accuracy and 
computational complexity. Assume mission time 2000, we convert the 
dynamic fault tree in Fig. 1 to the BN using the approach in [6,11] and 
enter the evidence that the braking system has failed:

	
( 2) 0

( 1) 0.5

( 0) 0.5

P Top state

P Top state

P Top state

= =

= =

= =

	 (8)

Solving the BN using the inference algorithm gives the results of 
some importance factors in Table 3 and Table 4.

4.2.	 Updating reliability data according to sensors informa-
tion

When the braking system fails, sometimes additional evidence 
from diagnostic sensors is observed too, and this may be used to opti-
mize the system diagnosis. However, the performance of a diagnostic 
system highly depends upon the number and location of sensors. Ac-
cording to the optimal sensors placement in [16] and Table 3, X18 and 
X19 will be the best location of sensors. If sensors detect the failure 
of X18 and X19, we can adopt the evidence to reduce the number of 
the diagnosed minimal cut sets using algorithm 1. The cut sets under 
evidence (CUE) is the set of all essential minimal cut sets obtained 
after evidence eliminates some cut sets. The following CUE function 
is generated:

	
1 2 22 23 26 24 25
14 15 16 17 12 13 3 4
3 7 8 3 5 6 3 9 10 11

CUEF X X X X X X X
X X X X X X X X
X X X X X X X X X X

= + + + + +

+ + + +
+ + +

	 (9)

Since a failure sensor can lead to a faulty diagnosis progress, we 
introduce the DIF of sensor to take this situation into account. The 
DIF for a sensor with respect to the system is measured by the same 
way the DIF of the components:

	
( ) /Sensor Sensor SDIF P Sensor S q Q= =

	
(10)

where qSensor and QS represent the unreliability of sensor and the sys-
tem, respectively.

Assume sensors have a fixed probability of failure of 10-6; the DIF 
of the sensor is 1.79×10-5. The updated CUE function is as follows:

Table 3.	 DIF of components for the braking system

Components Components’ 
DIF Components Components’ 

DIF

X18,X19 3.24e-1 X6,X7 7.01e-3

X22,X23 3.24e-1 X21,X25 4.79e-3

X26 2.87e-1 X6 2.01e-3

X1 1.25e-1 X3 1.55e-3

X20,X24 7.64e-2 X9,X10 1.52e-3

X2 5.74e-2 X16,X17 1.39e-3

X5 2.71e-2 X13 1.34e-3

X7 2.17e-2 X15 8.74e-4

X8 1.77e-2 X4 8.19e-4

X14 1.47e-2 X11 5.78e-7
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1 2 22 23 26 24 25
14 15 16 17 12 13 3 4
3 7 8 3 5 6 3 9 10 11+

CUEF X X X X X X X
X X X X X X X X
X X X X X X X X X X Sensor

′ = + + + + +

+ + + +
+ + +     

(11)

In addition, we add the sensors evidence nodes to the BN from the 
dynamic fault tree and set the conditional probability, which can be 
used to update the DIF of the components and CUE. The DIF of the 
CUE can be calculated using equation (12).

	

( , , )
( )CUE

E

P CUE E SDIF
P S DIF

= 	 (12)

S: system, E: variables with given evidence.
Now we input the evidence defined as equation (13) to the BN 

and update the DIF of components and CUE using the inference algo-
rithm. Table 5 and 6 shows the diagnostic data with sensors data.

	

( 18 2) 0

( 18 1) ( 18 0) 0.5

( 19 2) 0

( 19 1) ( 19 0) 0.5
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P X state P X state
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Algorithm 1     GetCUE(F, E, v )

FCUE＝0

Input:
F：the characteristic function
E：evidence  information function
v：if occurred, v=1, otherwise v=0 

Output：CUE

if (v=0) ｛E=ITE(E,0,1)｝

for (                         ) product E∀ ∈

｛ tempF=F

for (                                          )   {component product∀ ∈

if (                                                   )  ( )product F component∃ ∈ =

｛ tempF=Fcomponent=0 }

else ｛ tempF=Fcomponent=1 }
 }
FCUE＝ITE(FCUE, 0, tempF)

 }

return (FCUE)

4.3.	 Diagnosis strategy

As CUE represents minimal sets of component failures under evi-
dence that can cause a system failure, we should diagnose it one by 
one to find the root reason of the braking system failure. Only when 
we finish diagnosing a CUE can we do next. The order by which CUE 
are checked depends on its DIF ordering, while the order of compo-
nents in the same CUE is determined by their DIF. The CUE with 
larger DIF is checked first. Accordingly, components with larger DIF 
in a CUE are checked first. This assures a reduced number of system 
checks while fixing the braking system. Based on quantitative and 
qualitative data obtained from reliability analysis after incorporating 
evidence, the diagnostic strategy is as follows:

Step1. Sort all CUE and select the CUE with highest DIF value.
Step2. Check the component C with highest DIF in the CUE.
Step3. Split the CUE into those with C and those without. 

	      a) If C failed test we take the set of CUE that include C
Select the •	 CUE untested with highest DIF value.
And recursively repeat Step2 - Step3.•	

	      b) If C has not failed test we take the other set of CUE
Select the •	 CUE untested with highest DIF value.
And recursively repeat Step2 - Step3.•	

The diagnosis strategy can easily be described in the graphical 
diagnostic decision tree (DDT). It provides us with a map that allows 
us to recognize the failing components. It is a directed acyclic graph 
composed of circular nodes and arcs linking parent nodes to child 
nodes. A node represents a component being tested. Arcs point to the 
next component to be tested; right arcs point to components within 
the same cutest as the parent node, and left arcs point to components 
which are not in the same cutest as the parent node. Moreover, when 
diagnostician reaches a node and tests the component at the node, the 
test either fails or passes. If the test fails then the right arc is traversed 

Table 4.	 DIF of minmal cut sets for the braking system

MCS MCS’ DIF MCS MCS’ DIF

X26 2.78e-1 X19 X24 X25 2.25e-3

X18 X22 1.50e-1 X12 X13 1.34e-3

X18 X23 1.50e-1 X14 X15 8.74e-4

X19 X22 1.50e-1 X3 X4 1.17e-4

X19 X23 1.50e-1 X20 X21 X24 X25 3.37e-5

X1 1.25e-1 X16 X17 3.32e-5

X2 5.74e-2 X3 X4 2.17e-5

X23 X20 X21 2.25e-3 X7 X8 X3 1.32e-5

X18 X24 X25 2.25e-3 X3 X5 X6 1.50e-6

X22 X20 X21 2.25e-3 X3 X9 X10 X11 2.40e-11

Table 5.	 The updated DIF of components for the braking system

Components Components’ 
DIF Components Components’ 

DIF

X22,X23 4.65e-1 X14 1.41e-2

X26 7.86e-2 X25 6.93e-3

X24 7.84e-2 X6 1.99e-3

X20 7.32e-2 X3 1.55e-3

X1 3.54e-2 X9,X10 1.52e-3

X5 2.76e-2 X16,X17,X21 1.37e-3

X7 2.17e-2 X4 8.01e-4

X8 1.76e-2 X13 3.81e-4

X12 1.75e-2 X15 2.47e-4

X2 1.62e-2 X11 5.78e-7

Table 6.	 The updated DIF of CUE for the braking system

CUE CUE’s DIF CUE CUE’s DIF

X22 4.65e-1 X14 X15 2.47e-3

X23 4.65e-1 Sensor 1.79e-5

X26 7.86e-2 X16 X17 9.33e-6

X1 3.54e-2 X3 X4 6.11e-6

X2 1.62e-2 X3 X7 X8 1.54e-6

X24 X25 6.93e-3 X3 X5 X6 2.22e-7

X12 X13 3.78e-4 X3 X9 X10 X11 3.53e-12
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indicating the need to repair the tested component in the parent node. 
If a test passes then the left arc is traversed indicating that the cut 
sets which include the tested component in the parent node have not 
failed. Once the order of components is determined, we can generate 
the DDT of the braking system shown in Fig.3.

Average diagnostic cost is often used to evaluate the fault diag-
nosis method. The diagnostic cost is lower; the method is better. As 
we all know, the output of fault diagnosis method is the DDT, we 
can evaluate it with the help of several decision tree evaluation mea-
sures. Traditional evaluation measures have the mean depth of the tree 
[20], which calculates the expected number of tests needed to isolate 
a fault, and the expected cost function [9], which takes into account 
the testing cost of a path as a weighting factor. But these measures 
only consider the test cost and the failure probability of components, 
and neglect system qualitative structure and the importance factors 
of each component. Also, they only diagnose one fault at a time and 
are not capable of detecting multiple faults by a single tree traversal. 
Based on these evaluation mechanisms, we introduce expected diag-
nostic cost (EDC) which incorporates the qualitative (structure) and 
quantitative (reliability analysis) into one measure for predicting di-
agnosis cost [16]. This evaluation index takes both diagnosis accuracy 
and diagnosis cost into consideration, also considers the relationship 
between component failure and system failure, and can evaluate the 
diagnosis algorithm objectively. EDC can be computed by:

	 1

n

i i
i

S

qcutset cp
EDC

Q
==
∑ 	 (14)

where Qs is the unreliability of the system, cpi is the sum of all test 
costs from the top node to the cutset’s leaf node, qcutseti is the unreli-
ability of cut sequences.

For convenience, assuming all components have a unit test cost 
and their test cost is independent, the diagnostic cost of different al-
gorithms using equation (14) is shown in Table 7, which indicates 

the proposed approach is more efficient than others. Furthermore, the 
curve in Fig. 4 depicts the effect of sensors’ reliability on EDC of the 
braking system. So we should choose the sensors with higher reliabil-
ity to detect the components in order to decrease the diagnosis cost of 
the braking system.

5. Conclusion

In this work, we have discussed the use of fuzzy set theory, dy-
namic fault tree and BN to diagnose the micro-computer controlled 

straight electro-pneumatic braking system. 
Specifically, it has emphasized three impor-
tant issues that arise in engineering diagnostic 
applications, namely the challenges of insuffi-
cient fault data, uncertainty and failure depend-
ency of components. In terms of the challenge 
of insufficient fault data and uncertainty, we 
adopt expert elicitation and fuzzy set theory to 
evaluate the failure rates of the basic events for 
the braking system; In terms of the challenge of 
failure dependency, we use a dynamic fault tree 
to model the dynamic behavior of system fail-
ure mechanisms and calculate some reliability 
results by mapping a dynamic fault tree into an 
equivalent BN in order to avoid the state space 
explosion problem. Furthermore, we incorpo-
rate sensors data into fault diagnosis, cope with 
the sensors reliability and propose the schemes 
on how to update DIF and the cut sets. In ad-
dition, an efficient diagnostic decision algo-
rithm is developed based on these results to 
optimize system diagnosis. The experimental 
results demonstrate its efficiency. The proposed 
method makes use of the advantages of the dy-
namic fault tree for modeling, fuzzy set theory 
for handling the uncertainty and BN for infer-
ence ability, which is especially suitable for the 
complex system diagnosis.

In the future work, we will focus on the dy-
namic fault tree model optimization and take the test cost, sensitive 
analysis and other attributes into the diagnosis strategy.

Table 7.	 The comparison among three diagnosis methods

Diagnosis methods EDC

Diagnosis method without sensors 3.562

Diagnosis method with sensors data by Assaf and Dugan [2] 2.586

Diagnosis method in the paper 1.918
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Fig. 3.	 DDT for service braking failure of braking system, (a) DDT without evidence from sensors; (b) DDT 
with evidence from sensors

Fig. 4. The relation curves of EDC and failure probability of sensors
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