PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Life cycle assessment to demonstrate how automation improves the environmental performance of an underground mining operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The worldwide move to introduce more automation into underground metal ore mining is currently aimed at improving both operational productivity and safety. A comparative life cycle assessment (LCA) was used as a novel approach to determine the beneficial impacts automation can also have on environmental performance, using data collected on mine site productivity and energy consumption. The LCA looked at four impact categories: global warming potential, acidification, eutrophication, and human toxicity. When comparing automated equipment to their traditional manual counterpart, all four impact categories experienced a reduction with automation and a subsequent improvement in sustainability performance. Global warming potential, for example, decreased by 18.3% over the mine life period, or 3.7 kg of carbon dioxide equivalent (CO2 eq.) per tonne of ore extracted. Environmental impact reductions were due primarily to lower diesel fuel consumption in the loading and haulage processes as well as a 27% shorter operational mine life leading to less years of mine and mine camp maintenance.
Rocznik
Strony
182--194
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • Laurentian University, Bharti School of Engineering, Canada
  • Laurentian University, Bharti School of Engineering, Canada
autor
  • Glencore, XPS, Canada
autor
  • Laurentian University, Bharti School of Engineering, Canada
  • Laurentian University, Bharti School of Engineering, Canada
Bibliografia
  • [1] Ferreira H, Leite MGP. A Life Cycle Assessment study of iron ore mining. J Clean Prod 2015;108:1081-91. https://doi.org/10.1016/j.jclepro.2015.05.140.
  • [2] Chadwick J. The autonomous mine. Int Min 2010;6:46-57.
  • [3] Gustafson A. Automation of load haul dump machines [Research report]. Luleå, Sweden: Luleå University of Technology; 2011.
  • [4] Chadwick J. Rise of the machines 2005;192:15-7.
  • [5] McNab K, Garcia-Vasquez M. Autonomous and remote operation technologies in Australian mining. Brisbane City, Australia: Centre for Social Responsibility in Mining (CSRM) - Sustainable Minerals Institute, University of Queensland; 2011.
  • [6] Dragt BJ, Camisani-Calzolari FR, Craig IK. An overview of the automation of load-haul-dump vehicles in an underground mining environment. IFAC Proc 2005;38:37-48. https://doi.org/10.3182/20050703-6-CZ-1902.01389.
  • [7] Gustafson A, Schunnesson H, Kumar U. Reliability analysis and comparison between automatic and manual load haul dump machines. Qual Reliab Eng Int 2015;31:523-31. https://doi.org/10.1002/qre.1610.
  • [8] Bellamy D, Pravica L. Assessing the impact of driverless haul trucks in Australian surface mining. Res Pol 2011;36:149-58. https://doi.org/10.1016/j.resourpol.2010.09.002.
  • [9] Reid C, Bécaert V, Aubertin M, Rosenbaum RK, Deschênes L. Life cycle assessment of mine tailings management in Canada. J Clean Prod 2009;17:471-9. https://doi.org/10.1016/j.jclepro.2008.08.014.
  • [10] Haque N, Norgate T. Life cycle assessment of iron ore mining and processing. 2015. p. 615-30. https://doi.org/10.1016/B978-1-78242-156-6.00020-4.
  • [11] Northey S, Haque N, Mudd G. Using sustainability reporting to assess the environmental footprint of copper mining. J Clean Prod 2013;40:118-28. https://doi.org/10.1016/j.jclepro.2012.09.027.
  • [12] Moreau K, Bose R, Shang H, Scott JA. Automation to increase productivity and reduce energy consumption in deep underground mining operations. Comer Ind Madera (CIM) J 2019;10:115-24. https://doi.org/10.15834/cimj.2019.11.
  • [13] ISO 14040. Environmental management - life cycle assessment - principles and framework. International Organization for Standardization; 2006.
  • [14] Darling P. Automation and robotics. In: Darling P, editor. SME mining engineering handbook. 3rd ed. Englewood, Colo: Society for Mining, Metallurgy, and Exploration; 2011.
  • [15] Paraszczak J, Gustafson A, Schunnesson H. Technical and operational aspects of autonomous LHD application in metal mines. Int J Min Reclamat Environ 2015;29:391-403. https://doi.org/10.1080/17480930.2015.1086553.
  • [16] Government of Canada. Emission factors - national inventory report 1990-2017: greenhouse gas sources and sinks in Canada [internet]. 2019. Retrieved from: https://open.canada.ca/data/en/dataset/779c7bcf-4982-47eb-af1ba33618a05e5b.
  • [17] World Nuclear Association. Comparison of lifecycle greenhouse gas emissions of various electricity generation sources [internet]. UK: WNA; 2011. Retrieved from: http://www.worldnuclear.org/uploadedFiles/org/WNA/Publications/Working_Group_Reports/comparison_of_lifecycle.pdf.
  • [18] Campbell H, Seeber C, Wywrot J. Ventilation Part 1 [internet]. Canada: Canadian Mining Journal; 2003. Retrieved from: https://www.canadianminingjournal.com/features/ventilation-part-1.
  • [19] De la Vergne J. Engineering. M. Hard rock miners handbook : rules of thumb. North Bay, Ont.: McIntosh Engineering; 2003.
  • [20] Sphera. GaBi Solutions [software]. USA: Sphera; 2020. Retrieved from, http://www.gabi-software.com/canada/index/.
  • [21] Canadian Industry Program for Energy Conservation (CIPEC). Benchmarking the energy consumption of Canadian underground bulk mines. Natural Resources Canada; 2005.
  • [22] Bare J. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol Environ Policy 2011;13:687-96. https://doi.org/10.1007/s10098-010-0338-9.
  • [23] Menoufi K, Casol A, Cabeza L. Life cycle analysis and life cycle impact assessment methodologies [Master's Thesis]. Lleida, Spain: University of Lleida; 2011.
  • [24] Government of Canada. Greenhouse Gas Report 2004 - 2017 [internet]. 2019. Retrieved from: https://open.canada.ca/data/en/dataset/a8ba14b7-7f23-462a-bdbb-83b0ef629823.
  • [25] Canada Gazette. Government Notices, Part I [internet]. 2019. Retrieved from, http://gazette.gc.ca/rp-pr/p1/2019/2019-01-19/html/notice-avis-eng.html.
  • [26] United States Environmental Protection Agency. Greenhouse Gas Emissions, Understanding Global Warming Potentials [internet]. USA: EPA; 2017. Retrieved from, https://www.epa.gov/ghgemissions/understanding-globalwarming-potentials.
  • [27] Parry ML, Canziani O, Palutikof JP, van der Linden P, Hanson CE. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contrib. Work. Gr. II to Fourth Assess. Rep. Intergov. Panel Clim. Chang.. 2007.
  • [28] Government of Canada. Canada's Renewable Power Landscape 2017 - Energy Market Analysis [internet]. 2017. Retrieved from, https://www.cerrec.gc.ca/nrg/sttstc/lctrct/rprt/2017cndrnwblpwr/ghgmssn-eng.html.
  • [29] Pacheco-Torgal F. 1 - introduction to biopolymers and biotech admixtures for eco-efficient construction materials. In: Pacheco-Torgal F, Ivanov V, Karak N, Jonkers H, editors. Biopolym. Biotech admixtures eco-efficient constr. Mater. Woodhead Publishing; 2016. p. 1-10. https://doi.org/10.1016/B978-0-08-100214-8.00001-4.
  • [30] Guinée JB, Lindeijer E. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Springer Netherlands; 2002.
  • [31] Kim T, Chae C. Environmental impact analysis of acidification and eutrophication due to emissions from the production of concrete. Sustainability 2016;8:578. https://doi.org/10.3390/su8060578.
  • [32] Hertwich E, Mateles S, Pease W, McKone T. Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environ Toxicol Chem 2001;20: 928-39. https://doi.org/10.1897/1551-5028(2001)020<0928:HTPFLC>2.0.CO. 2.
  • [33] Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, et al. USEtox-the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 2008;13:532. https://doi.org/10.1007/s11367-008-0038-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77be2d3a-e535-4e91-9937-d83de0bb6927
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.