PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of particle size on coal flotation kinetics: A review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coal flotation is a complex multiphase process governed by different sub-processes and interphase interactions. The coal cleaning efficiency by flotation is largely affected by many different physical and chemical factors that can be roughly classified into three main group: coal feed properties, pulp chemical and rheological properties, and machine and operational properties. A great number of flotation kinetic model have been proposed in literature but a vast majority uses three parameters to describe the flotation kinetics, which are the ultimate recovery, the flotation rate constant, and flotation time. The models expand on the classical theory of flotation proposed by Zuniga (1935) that is based on the assumption that the particle–bubble collision rate is first-order with respect to the number of particles in the system, while bubble concentration remains constant. The flotation rate constant is directly proportional to available bubble surface area and probability of flotation, which is strongly dependent on particle size. Therefore, particle size is one of the most important parameters in coal flotation because it affects gas bubble mineralization and froth stability, bubble size distribution and air holdup, bubble-particle collision, attachment, and detachment rates, and reagent adsorption. Numerous researchers have studied the effect of particle size on flotation kinetics over years. This paper provides a comprehensive review of coal flotation kinetics models with a special focus on the effect of particle size on coal kinetic rate, recovery, and product quality. A particular emphasis will be put on research findings reported over the last three decades.
Słowa kluczowe
EN
review   coal   flotation   model   kinetic  
Rocznik
Strony
1172--1190
Opis fizyczny
Bibliogr. 135 poz., rys., tab.
Twórcy
  • University of Belgrade, Technical faculty in Bor, Vojske Jugoslavije 12, Bor, Serbia
autor
  • University of British Columbia, Norman B. Keevil Institute of Mining Engineering, Faculty of Applied Science, 508B-6350 Stores Road, Vancouver, Canada
Bibliografia
  • ABDEL-KHALEK, N.A., STACHURSKI, J., 1990. Role of grain size on the flotation of coals of different rank. Miner. Metall. Proc. 7 (1), 38.
  • ABKHOSHK, E., KOR, M., REZAI, B., 2010. A study on the effect of particle size on coal flotation kinetics using fuzzy logic. Expert Syst. Appl. 37 (7), 5201-5207.
  • AGAR, G.E., CHIA, J., REQUIS, C.L., 1998. Flotation rate measurements to optimize an operating circuit. Miner. Eng. 11 (4), 347-360.
  • AHMED M.M., 1995. Kinetics of Maghara coal flotation. Unpublished MSc Thesis, Assiut University, pp. 3–33.
  • AKSOY, D. O., SAGOL, E., 2016. Application of central composite design method to coal flotation: Modelling, optimization and verification. Fuel 183, 609-616.
  • AL TAWEEL, A.M., DELORY, B., WOZNICZEK, J., STEFANSKI, M., ANDERSEN, N., HAMZA, H.A., 1986. Influence of the surface characteristics of coal on its floatability. Colloids Surf. 18 (1), 9 – 18.
  • APLAN F.F, 1997. Use of flotation process for desulfurization of coal, in: Wheelock, T.D. (Ed.) Coal Desulfurization: Chemical and Physical Methods. American Chemical Society, Symposium Ser., 64-70.
  • APLAN, F.F., 1999. The historical development of coal flotation in the United States. Advances in flotation technology. B. K. Parekh and J. D. Miller. Littleton, Colorado, Society for mining, metallurgy, and exploration, Inc.
  • ARNOLD, B.J., APLAN, F.F., 1989. The hydrophobicity of coal macerals. Fuel 68, 651-658.
  • BEAFORE, F.J., CAWIEZEL, K.E., MONTGOMERY, C.T., 1984. Oxidized coal-What it is and how it affects your preparation plant performance. J. Coal Qual. 3, 17-24.
  • BEDEKOVIC, G., 2016. A study of the effect of operating parameters in column flotation using experimental design. Physicochem. Probl. Miner. Process. 52 (2), 523−535.
  • BP, 2017. BP statistical review of world energy 2017. Available at: https://www.bp.com/content/ dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-worldenergy-2017-full-report.pdf
  • BROZEK, M., MLYNARCZYKOWSKA, A., TURNO A., 2003. The relationships between deterministic and stochastic models of flotation. Arch. Min. Sci. 48 (3), 299-314.
  • BROZEK, M., MLYNARCZYKOWSKA, A., 2006. Application of the stochastic model for analysis of flotation kinetics with coal as an example. Physicochem. Probl. Miner. Process. 40, 31-44.
  • BROZEK M., MLYNARCZYKOWSKA A., 2007. Analysis of kinetics models of batch flotation. Physicochem. Probl. Miner. Process. 41, 51-65.
  • BROZEK, M., MLYNARCZYKOWSKA, A., 2013. An analysis of effect of particle size on batch flotation of coal. Physicochem. Probl. Miner. Process. 49, 341–56.
  • BU, X.N, XIE, G.Y, PENG, Y.L. CHEN, Y.R. 2016. Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology. Int. J. Miner. Process. 157, 175-183.
  • BU, X. XIE, G, PENG, Y., GE, L., NI, C, 2017a. Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochem. Probl. Miner. Process. 53 (1), 342−365.
  • BU, X., XIE, G., CHEN, Y., NI, C., 2017b. The order of kinetic models in coal fines flotation. Int. J. Coal Prep. Util. 37 (3), 113-123.
  • CHANDER S., POLAT M., 1994. In quest of a more realistic flotation kinetics model. In: Proceedings of the IV Meeting on the Southern Hemisphere on Mineral Technology and III Latin American Congress on Froth Flotation, Castro, S., Alvares, J. (Eds.), Chile, 481-500.
  • CHANDER, S., POLAT, M., 1995. Coal flotation kinetics: Interactions between physical and chemical variables. In: Plenary Lecture, Proc. Int. Conf. on Mineral Proc.-Recent Advances and Future Trends, Kanpur-India, 615–631.
  • CHAVES, A. P., RUIZ, A. S., 2009. Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings. Int. J. Coal Prep. Util. 29 (6), 289-297.
  • CHENG, G., MA, L.Q., GUI, X.H., LIU, J.T., WANG, Y.T., 2013. Study on kinetic modelling for fine coal flotation. Int. J. Coal Prep. Util. 33 (1), 12-25.
  • CILEK, E.C., 2004. Estimation of flotation kinetic parameters by considering interactions of the operating variables. Miner. Eng. 17 (1), 81-85.
  • COLLINS, G. L., JAMESON, G.L., 1976. Experiments on the flotation of fine particles. The influence of particles size and charge. Chem. Eng. Sci. 31, 985-991.
  • DEY, S., 2012. Enhancement in hydrophobicity of low rank coal by surfactants—a critical overview. Fuel Process. Technol. 94, 151–158.
  • DIAO, J., FUERSTENAU, D.W., HANSON, J.S., 1992. Kinetics of coal flotation, In: SME-AIME Annual Meeting, Phoenix, AZ, vol. 92.
  • DOWLING E.C., KLIMPEL R.R, APLAN F. F., 1985. Model discrimination in the flotation of a porphyry copper ore. Miner. Metall. 2 (2), 87-101.
  • DRZYMALA, J., AHMED, H.A. M., 2005. Mathematical equations f or approximation of separation results using the Fuerstenau upgrading curves. Int. J. Miner. Process. 76, 55–65.
  • DRZYMALA, J., 2006. Atlas of upgrading curves used in separation and mineral science and technology. Physicochem. Probl. Miner. Process. 40, 19–29.
  • DRZYMALA, J., 2007. Mineral Processing. Foundations of theory and practice of minerallurgy. 1st edition., Ofic. Wyd. PWr., Wroclaw.
  • DRZYMALA, J., 2018. Mineral processing. Foundations of theory and practice of minerallurgy. 2nd edition., Ofic. Wyd. PWr, Wroclaw, Poland.
  • DUBE, R.M., 2012. Collectors for enabling flotation of oxidized coal. Theses and Dissertations-Mining Engineering. 1.
  • EK, C., 1992. Flotation kinetics. In: Innovations in Flotation Technology (Mavros P., Matis K.A. Eds.). Kluwer Academic Publisher.
  • FAN, M., TAO, D., ZHAO, Y., RHONAKER, R., 2013. Effect of nanobubbles on different particle size coal flotation. Miner. Metall. Process. 30 (3), 157-167.
  • FIRTH, B.A., SWANSON, A.R., NICOL, S.K., 1978. The influence of feed size distribution on the stage flotation of poorly floating coals. Aust. IMM. 267, 49-53.
  • FUERSTENAU, D.W., ROSENBAUM, J.M., LASKOWSKI, J.S., 1983. Effect of surface functional group on the flotation of coal. Colloids Surf. 8, 153–174.
  • FUERSTENAU, D.W., DIAO, J., 1992. Characterization of coal oxidation and coal wetting behavior by film flotation. Coal Prep. 10 (1–4),1–17.
  • GAUDIN, A.M. GROH, J.O. HENDERSON, H.B., 1931. Effect of particle size in flotation. Am. Inst. Min. Metall. Eng., Tech. Publ. 414, 3-23.
  • GAUDIN, A. M., 1932. Flotation. 1st Edition, McGraw-Hill, New York.
  • GAUDIN, A.M., 1957. Flotation. 2nd Edition, McGraw-Hill, New York.
  • GLEMBOTSKII, V.A., KLASSEN, V.I., PLAKSIN, I.N., 1972. Flotation. 2nd Edition, McGraw-Hill, New York.
  • GORAIN, B.K., FRANZIDIS, J.P., MANLAPIG, E.V., 1997. Studies on impeller type, impeller speed and airflow rate in an industrial scale flotation cell. Part 4: Effect of bubble surface area flux on flotation kinetics. Miner. Eng. 10, 367-379.
  • GORAIN, B.K., MUNN, N., FRANZIDIS, J.P., MANLAPIG, E.V., 1998. Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell. Part 5: Validation of k-Sb relationship and effect of froth depth. Miner. Eng. 11, 615-626.
  • GOVINDARAJAN, B., RAO, T.C., 1991. An empirical model for batch coal flotation. Coal Prep. 9, 155–168.
  • GRAEME, J.J. 2012. The effect of surface liberation and particle size on flotation rate constants. Miner. Eng. 36-38, 132-137.
  • HARRIS, C.C., CHAKRAVARTI, A., 1970. Semi-batch flotation kinetics: species distribution analysis. Trans. AIME. 247, 162-172.
  • HERNAINZ, F., CALERO, M., 2001. Froth flotation: Kinetic models based on chemical analogy. Chem. Eng. Process. 40 (3), 269–275.
  • HOLUSZKO, M.E., 1991. Wettability and floatability of coal macerals as derived from flotations in methanol solutions. M. Sc. Thesis, UBC.
  • HOWER, J.C., FRANKIE, K.A., WILD, G.D., TRINKLE, E.J., 1984. Coal microlithotype response to froth flotation in selected western Kentucky coal. Fuel Process. Technol. 9, 1–20.
  • HUBER-PANU, H., ENE-DANALACHE, E., COJOCARIU, D.G., 1976. Mathematical models of batch and continuous flotation. In: MC Fuerstenau (ed.), Flotation, AIME, New York, 675-724.
  • HUMERES, E., DEBACHER, N. A., 2002. Kinetics and mechanism of coal flotation. Colloid Polym. Sci. 280, 365-371.
  • IMAIZUMI, T., INOUE, T., 1963. Kinetic considerations of froth flotation. In: Proceedings of the 6th International Mineral Processing Congress, Cannes, Ed. A. Roberts, 581-593.
  • JAMESON, G.J., S. NAM, S., YOUNG, M.M., 1977. Physical factors affecting recovery rates in flotation. Miner. Sci. Eng. 9 (3), 103–118.
  • JIA, R., HARRIS, G.H., FUERSTENAU, D.W., 2000. Improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int. J. Miner. Process. 58 (1), 99-118.
  • JOWETT, A., 1969. The development of studies in froth flotation kinetics. De Ingenieur (Niderl), 81 (38), M11-M17.
  • JOWETT, A., 1974. Resolution of flotation recovery curves by a difference plot method. Trans. Am. Soc. Min. Metall. Eng. 85, C263-C266.
  • JOWETT, A., SAFVI, S.M., 1960. Refinements in methods of determining flotation rates. Trans. AIME 217, 351–357.
  • KALINOWSKI, K., KAULA, R., 2013. Verification of flotation kinetics model for triangular distribution of density function of flotability of coal particles. Arch. Min. Sci., 58 (4), 1279–1287.
  • KELSALL, D.F., 1961. Application of probability in the assessment of flotation systems. Trans. Inst. Min. Metall. 70, 191204.
  • KESSLER, M.F., 1973. Interpretation of the chemical composition of bituminous coal macerals. Fuel 52 (3), 191-197.
  • KING, R.P., 2001. Modeling and simulation of mineral processing systems. Butterworth-Heinemann, Oxford, Great Britain.
  • KLASSEN, V.I., 1963. Coal flotation, Gosgortiekhizdat, 2nd Edition, Moscow. (In Russian).
  • KLIMPEL, R.R., HANSEN, R.D., MEYER, W.C., NIMERICK, K.H. 1979. Laboratory characterization of the influence of reagent changes on coal flotation. Presented at the AIME Meeting, New Orleans.
  • KLIMPEL, R.R., 1980. Selection of chemical reagents for flotation. In: Mular A., Bhappu R. (Eds.)., Mineral Processing Plant Design, 2nd Ed. SME, Littleton, CO., 907-934.
  • KOR, M., ABKHOSHK, E., GHARIBIE, K. H., AND SHAFAIE, S. Z., 2010. An investigation of the particle size effect on coal flotation kinetics using multivariable regression. Int. J. Min. Env. Iss. 1 (1), 41-47.
  • LASKOWSKI, J.S., 1995. Coal surface chemistry and its effects on fine coal processing. In: Kawatra, S.K. Ed., High Efficiency Coal Preparation: An International Symposium. SME, Littleton, CO, 163–176.
  • LASKOWSKI, J.S., 2001. Coal flotation and fine coal utilization, Elsevier, Amsterdam.
  • LASKOWSKI, J.S., G.H. LUTTRELL, G.H., ARNOLD, B.J., 2010. Coal flotation. XXV International Mineral Processing Congress (IMPC 2010), Brisbane, Australia.
  • LI, Y., ZHAO, W., GUI, X., ZHANG, X., 2013, Flotation kinetics and separation selectivity of coal size fractions. Physicochem. Probl. Miner. Process. 49, 387-395.
  • LIANG, L., LI, Z., PENG, Y., TAN, J., XIE, G., 2015. Influence of coal particles on froth stability and flotation performance. Miner. Eng. 81, 96–102.
  • LIAO, Y., CAO, Y., LIU, C., ZHAO, Y., ZHU, G., 2017. Comparison of the effect of particle size on the flotation kinetics of a low-rank coal using air bubbles and oily bubbles. J. S. Afr. Inst. Min. Metall. 117 (6), 561-566.
  • LOVEDAY, B.K., 1966. Analysis of froth flotation kinetics. Trans. Am. Soc. Min. Metal. Eng., C219-C225.
  • LYNCH, A.J., JOHNSON, N.W., MANLAPIG, E.V., THORN, C.G., 1981. Mineral and coal flotation circuits—their simulation and control. Elsevier, Amsterdam, Netherland.
  • LYNCH, A. J., WATT, J. S., FINCH, J. A., HARBORT, G. E., 2007. History of flotation technology. Chapter in: Froth flotation: A century of innovation by Fuerstenau, M. C., Jameson, G. J., & Yoon, R. H. (Eds.). SME., 65-91.
  • MARKOVIC, Z. S., JANKOVIC, A., TOMANEC, R., 2008. Effect of particle size and liberation on flotation of a low grade porphyry copper ore. J. Min. Metall. Sect. A 44 (1), 24 – 30.
  • MAVROS, P., MATIS, K.A., 2013. Innovations in flotation technology. (Vol. 208). Springer Science & Business Media.
  • MOHNS, C.A., 1997. Effect of particle size on coal flotation kinetics. MSc. Thesis. Department of Mining Engineering, Queen’s University, Kingston, Canada.
  • MORRIS, T.M., 1952. Measurments and evaluation of the rate of flotation as a function of particle size. Miner. Eng. 4, 794798.
  • NATIONAL RESEARCH COUNCIL (NRC), 2002. Coal waste impoundments. National Academy Press, Washington DC.
  • NGUYEN, A., SCHULZE, H. J., 2003. Colloidal science of flotation. Vol. 118. CRC Press.
  • NI, C., XIE, G., JIN, M., PENG, Y., XIA, W., 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technol. 292, 210-216.
  • OLIVEIRA, J.F., SARAIVA, S.M., PIMENTA, J. S., OLIVEIRA A.P.A., 2001. Kinetics of pyrochlore flotation from Arax mineral deposits. Miner. Eng. 14 (1), 99-105.
  • PANOPOULOS, G., KING, R. P., JUCKES, A. H., 1986. The effect of particle-size distribution on the flotation of two South African coals. J. S. Afr. Inst. Min. Metal. 86 (5), 141-152.
  • PAREKH, B.K., 2000. Coal: flotation. Encyclopedia of Separation Science. 2490-2496.
  • PENG, Y., LIANG, L., TAN, J., SHA, J., XIE, G., 2015. Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. Int. J. Miner. Process. 142, 17–21.
  • PIETRZAK, R., WACHOWSKA, H., 2006. The influence of oxidation with HNO bsubN3b/subN on the surface composition of high-sulphur coals: XPS study, Fuel Process. Technol. 87 (11), 1021–1029.
  • POLAT, M., ARNOLD, B.J., CHANDER, S., HOGG, R., ZHOU, R., 1993. Coal flotation kinetics—effect of particle size and specific gravity. In: B.K. Parekh and J.G. Groppo, Editors, Proc. and Utilization of High Sulfur Coals vol. V, Elsevier, New York, 161.
  • POLAT, M., CHANDER, S., 2000. First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. Int. J. Miner. Process. 58 (1-4), 145-166.
  • POLAT, M., POLAT, H., CHANDER, S., 2003. Physical and chemical interactions in coal flotation. Int. J. Miner. Process. 72 (1-4), 199-213.
  • RAO, T. C., GOVINDARAJAN, B., VANANGAMUDI, M., 1989. A kinetic model for batch coal flotation. Miner. Eng. 2 (3), 403–414.
  • RASTOGI, R.C., APLAN, F.F., 1985. Coal flotation as a rate process. Miner. Metall. Process. 2, 137–147.
  • RUBINSTEIN, J.B. AND SAMYGIN, V.D. 1998. Effect of particle and bubble size on flotation kinetics. Frothing in Flotation II: Recent Advances in Coal Processing. 2, 51-80.
  • SAHOO, S.K., SURESH, N., VARMA, A.K., 2017a. Studies on separation of macerals from coal by froth flotation J. Energ. Nat. Resour. 6 (3), 38-44.
  • SAHOO, S.K., SURESH, N., VARMA, A.K., 2017b. Kinetic studies on petrographic components of coal in batch flotation operation. Int. J. Coal Prep. Util., 1-22.
  • SCHUMANN, R., 1942. Flotation kinetics. Part 1. Methods for steady-state study of flotation problems. J. Phys. Chem. 46, 891-902.
  • SOKOLOVIC, J., STANOJLOVIC, R., MARKOVIC, Z., 2006. Effect of oxidation on flotation and electrokinetic properties of coal, J. Min. Metall. Sect. A 42 (1), 69–81.
  • SOKOLOVIC, J., STANOJLOVIC, R., MARKOVIC, Z., 2012a. Тhe effects of pretreatment on the flotation kinetics of waste coal. Int. J. Coal Prep. Util. 32 (3), 130-142.
  • SOKOLOVIC, J., STANOJLOVIC, R., MARKOVIC, Z., 2012b. Activation of oxidized surface of anthracite waste coal by attrition. Physicochem. Probl. Miner. Process. 48 (1), 5–18.
  • SOMASUNDARAN, P., ZHANG, L., FUERSTENAU, D.W., 2000. The effect of environment, oxidation and dissolved metal species on the chemistry of coal flotation. Int. J. Miner. Process. 58 (1), 85-97.
  • SRIPRIYA, R., RAO, P.V.T., CHOUDHURY, R.B., 2003. Optimization of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques. Int. J. Miner. Process. 68, 109–127.
  • STOKOWSKI, H., FREYBERGER, W.L., 1985. Model describing mechanism of the flotation process. T. I. Min. Metall. 94, C61-C69.
  • SUN, S.C., 1954. Effects of oxidation of coals on their flotation properties. Trans. Am. Inst. Min. Metall. Eng. 6, 396–401.
  • SUTHERLAND, K.L., 1948. Kinetics of flotation process. J. Phys. Chem. 52, 386–390.
  • SWANN, P.D., ALLARDICE, D.J., EVANS, D.G., 1972. Low-temperature oxidation of brown coal: 1. Change in internal surface due to oxidation. Fuel 53, 85–87.
  • TAO, D., 2005. Role of bubble size in flotation of coarse and fine particles—a review. Sep. Sci. Technol. 39 (4), 741–760.
  • TARJAN, G., 1986. Mineral processing: concentration, flotation, separation, backup processes. Vol. 2. Akademai Kiado, Budapest, 113–336.
  • TOMLINSON, H.S., FLEMING, M.G., 1963. Flotation rate studies. In: Proceedings of VI International Mineral Processing Congress, Cannes, Pergamon Press, Oxford – New York, 563-579.
  • TRAHAR, W. J., WARREN, L. J., 1976. The floatability of very fine particles-a review. Int. J. Miner. Process. 3, 103–131.
  • TRAHAR, W.J., 1981. A rational interpretation of the role of particle size in flotation. Int. J. Miner. Process. 8, 289–329.
  • TSAI, S. C. 1985. Effects of surface chemistry, particle size and density on froth flotation of fine coal. Colloids Surf. 16, 323– 336.
  • VANANGAMUDI, M., RAO, T.C., 1986. Modelling of batch coal flotation operation. Int. J. Miner. Process. 16, 231-243.
  • VANANGAMUDI, M., KUMAR, S.S., RAO, T.C., 1989. Effect of fines content on the froth flotation of coal. Powder Technol. 58 (2), 99-105.
  • VAPUR, H., BAYAT, O., UCURUM, M., 2010. Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell. Energ. Convers. Manage. 51 (10), 1891-1897.
  • VARBANOV, R., 1984. Trans. IMM C93, 6–8.
  • VINNETT, L., ALVAREZ-SILVA, A., JAQUES, A., HINOJOSA F., YIANATOS, J., 2015. Batch flotation kinetics: Fractional calculus approach. Miner. Eng. 77, 167-171.
  • WANG, H.H., DLUGOGORSKI, B.Z., KENNEDY, E.M., 2003. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modeling. Prog. Energy Combust. Sci. 29, 487–513.
  • WEN, B., XIA, W., SOKOLOVIC, J., 2017. Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals. Powder Technol. 319, 1–11.
  • WEN, W.W., SUN, S.C, 1981. An electrokinetic study on the oil flotation of oxidized coal. Sep. Sci. Technol. 16, 1491-1521. WILLS, B., 2006, Handbook of mineral processing technology, 7th Edn. Wiley, New York.
  • WOODBURN, E. T., LOVEDAY, B.K. 1965. The effect of variable residence time on the performance of a flotation system. J. South. Afr. Inst. Min. Metall. 12, 612–628.
  • WORLD COAL ASSOCIATION (WCA), 2012. World Coal Association, Coal – energy for sustainable development 2012, Available at: http://www.worldcoal.org/blog/coal-%E2%80%93-energy-for-sustainable-development/
  • WORLD ENERGY COUNCIL (WEC), 2017. World energy resources 2016. Available at: https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-report2016.10.03.pdf.
  • XIA, W., YANG, J., 2013. Experimental design of oily bubbles in oxidized coal flotation. Gospod. Surowcami Min. 29 (4), 129-136.
  • XIA, W., YANG, J., LIANG, C., 2013. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technol. 237, 1-8.
  • XIA, W., YANG, J., LIANG, C., 2014. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM. Appl. Surf. Sci. 293, 293–298.
  • XU, M., 1998. Modified flotation rate constant and selectivity index. Miner. Eng. 11 (3), 271–278.
  • YIANATOS, J., BERGH, L., VINNETT, L., CONTRERAS, F., DIAZ, F., 2010. Flotation rate distribution in the collection zone of industrial cells. Miner. Eng. 23, 1030-1035.
  • YOON, R.-H., AKSOY, B.S., 1999. Hydrophobic forces in thin water films stabilized by dedecylammonium chloride. J. Colloid Sci. 211, 1-10.
  • YOON, R.H., LUTTRELL, G.H., 1989. The effect of bubble size on fine particle flotation. Miner. Process. Extr. Metall. Rev. 5, 101–122.
  • YOON, R-H., MAO, L, 1996. Application of extended DLVO theory, IV: Derivation of flotation rate equation from first principles. J. Colloid Interface Sci., 181, 613-626.
  • YOON, R.H., LUTTRELL, G.H., ASMATULU, R. 2002. Extending the upper particle size limit for coal flotation. J. South. Afr. Inst. Min. Metall. 102 (7), 411-415.
  • ZHANG, H., LIU, J., CAO, Y. WANG, Y., 2013. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder Technol., 246, 658-663.
  • ZHANG, S.Q., 2004. Coal chemistry. China University of Mining and Technology Press, Xuzhou. (In Chinese).
  • ZUNIGA, H.G., 1935. Flotation recovery is an exponential function of its rate. Bol. Soc. Nac. Min., Santiago, Santiago, Chile, 47, 83-86.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77b92c6b-859a-4ce2-a350-11746f413d41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.