PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CO2 storage potential of sedimentary basins of Slovakia, the Czech Republic, Poland and the Baltic States

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been increasingly realised that geological storage of CO2 is a prospective option for reduction of CO2 emissions. The CO2 geological storage potential of sedimentary basins with the territory of Slovakia, the Czech Republic, Poland, and the Baltic States is here assessed, and different storage options have been considered. The most prospective technology is hydrodynamic trapping in the deep saline aquifers. The utilisation of hydrocarbon (HC) fields is considered as a mature technology; however storage capacities are limited in the region and are mainly related to enhanced oil (gas) recovery. Prospective reservoirs and traps have been identified in the Danube, Vienna and East Slovakian Neogene basins, the Neogene Carpathian Foredeep, the Bohemian and Fore-Sudetic Upper Paleozoic basins, the Mesozoic Mid-Polish Basin and the pericratonic Paleozoic Baltic Basin. The total storage capacity of the sedimentary basins is estimated to be as much as 10170 Mt of CO2 in deep saline aquifer structures, and 938 Mt CO2 in the depleted HC fields. The utilisation of coal seams for CO2 storage is related to the Upper Silesian Basin where CO2 storage could be combined with enhanced recovery of coal-bed methane.
Słowa kluczowe
Rocznik
Strony
219–--232
Opis fizyczny
Bibliogr. 67 poz., rys., wykr.
Twórcy
autor
  • Institute of Geology and Geography, Nature Research Centre, Ševèenkos 13, 03223 Vilnius, Lithuania
autor
  • Czech Geological Survey, Klárov 3, 118 21 Praha 1, Czech Republic
  • Institute of Geology and Geography, Nature Research Centre, Ševèenkos 13, 03223 Vilnius, Lithuania
autor
  • Institute of Geology and Geography, Nature Research Centre, Ševèenkos 13, 03223 Vilnius, Lithuania
autor
  • Institute of Geology and Geography, Nature Research Centre, Ševèenkos 13, 03223 Vilnius, Lithuania
autor
  • Dionýz Štúr State Geological Institute, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic
autor
  • Dionýz Štúr State Geological Institute, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic
autor
  • Dionýz Štúr State Geological Institute, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic
autor
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
autor
  • Min eral and En ergy Econ omy Research Institute, Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, A. Mickiewicza 30, 30-059 Kraków, Poland
  • Institute of Geology and Geography, Nature Research Centre, Ševèenkos 13, 03223 Vilnius, Lithuania
autor
  • State Ltd “Latvian Environment, Geology and Meteorology Centre”, Maskavas 165, 1019 Riga, Latvia
  • State Ltd “Latvian Environment, Geology and Meteorology Centre”, Maskavas 165, 1019 Riga, Latvia
autor
  • State Ltd “Latvian Environment, Geology and Meteorology Centre”, Maskavas 165, 1019 Riga, Latvia
autor
  • Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
autor
  • Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Bibliografia
  • 1. Andre L., Audigane P., Azaroual M., Menjoz A. (2007) Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Conversion and Management, 48: 1782-1797.
  • 2. Bachu S., Adams J.J. (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 44: 3151-3175.
  • 3. Bachu S., Gunter W.D., Perkins E.H. (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Conversion and Management, 35: 269-279.
  • 4. Blunt M., Fayers F.J., Orr F.M. (1993) Carbon dioxide in enhanced oil recovery. Energy Conversion and Management, 34: 1197-1204.
  • 5. Bradley R.A., Watts E.C., Williams E.R. (1991) Limiting Net Greenhouse Gas Emissions in the U.S. Report to the US Congress 1, US DOE.
  • 6. Brangulis A.P., Kanev S.V., Margulis L.S., Pomerantseva R.A. (1993) Geology and hydrocarbon prospects of the Palaeozoic in the Baltic region. In: Petroleum Geology of NW Europe. (ed. P J. Rarker): 651-656. Proceed ings of the 4th Conference. Geological Society of London.
  • 7. Bruant R.G., Guswa A.J., Celia M.A., Peters C.A. (2002) Safe storage of CO2 in deep saline aquifers. Environmental Science and Technology, 36 (11): 241-245.
  • 8. Cook P.J., Rigg A., Bradshaw J. (2000) Putti ng it back where it came from: is geological disposal of carbon dioxide an option for Australia? Australian Petroleum Production and Exploration Association Journal, 40 (1): 654-666.
  • 9. Crawford H.R., Neill G.H., Bucy B.J., Crawford P.B. (1963) Carbon dioxide: a multipurpose additive for effective well stimulation. Journal of Petroleum Technology, 237: 52-64.
  • 10. CSLF (Carbon Sequestration Leadership Forum) (2007) Phase II Final Report from the Task Force for Review and Identification of Standards for CO2 Storage Capacity Estimation, 15 June 2007, http://www.cslforum.org/publications/document/PhaseIIReport- StorageCapacityMeasurementTaskForce.pdf
  • 11. Dadlez R. (2006) The Polish Basin - relationship between crystalline, consolidated and sedimentary crust. Geological Quarterly, 50 (1): 43-58.
  • 12. Domżalski J., Górecki W., Mazurek A., Myśko A., Strzetelski W., Szamałek K. (2004) The prospects for petroleum exploration in the eastern sector of Southern Baltic as revealed by sea bottom geochemical survey correlated with seismic data. Przegląd Geologiczny, 52 (8/2): 792-799.
  • 13. Ershov A., Šliaupa S. (2000) Lithosphere strength variations in the Baltic basin. Geophysical Journal, 22 (4): 1-86.
  • 14. Franko O., Remšík A., Fendek M., Fusán O., Král M., Bodiš D., Drozd V., Vika K. (1995) Atlas of Geothermal Energy of Slovakia. GÚDŠ Publishing.
  • 15. Górecki W., ed. (2006) Atlas of Geothermal Resources in the Polish Lowlands - Mesozoic Formations (in Polish). AGH, Kraków.
  • 16. Górski M., Trela M., Kunicka-Górska W. (1998) Palaeostructure and palaeogeography from 3D seismic interpretation; examples from the Permian Basin in Poland. Petroleum Geoscience, 4 (3): 221-226.
  • 17. Górski M., Wojtkowiak Z., Radecki S. (1999) Barnówko- Mostno-Buszewo (BMB); the largest crude oil deposit in Poland. Petroleum Geoscience, 5: 5-15.
  • 18. Gunter W.D., Gentzis T., Rottenfusser B.A., Richardson R.J.H. . (1997) Deep coalbed methane in Alberta, Canada: a fuel ref source with the potential of zero greenhouse emissions. Energy Conversion and Management, 38: 217-222.
  • 19. Hansen J., Johnson D., Lacis A., Lebedeff S., Lee P., Rind D., Russell G. (1981) Climate impact of increasing atmospheric carbon dioxide. Science, 213 (4511): 957-966.
  • 20. Herzog H.J., Drake E.M., Adams E.E. (1997) CO2 Capture, Reuse, and Storage Technologies for Mitigating Global Climate Change. Final Report, DOE No. DE-AF22-96PC01257.
  • 21. Hladík V., Kolejka V., Lojka R., Fott P., Vácha D. (2008) CO2 emissions and geological storage possibilities in the Czech Republic. Slovak Geological Magazine: 29-41.
  • 22. Holub V., Tásler R. (1978) Filling of the Late Palaeozoic continental basins in the Bohemian Massif as a record of their palaeogeographical development. Geologische Rundschau, 67 (1): 91-109.
  • 23. Hrušecký I., Šefara J., Masaryk P., Lintnerová O. (1996) The structural and facies develoment and exploration potential of the Slovak part of the Danube Basin. EAGE Special Publication, 5: 417-429.
  • 24. IPCC (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change (eds. B. Metz, O. Davidson, H.C. de Coninck, M. Loos and L. A. Meyer). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 25. IPCC (2007) Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • 26. Karnkowski P. (1999) Oil and Gas Deposits in Po l and. „GEOS” Publication, Kraków.
  • 27. Klibáni L., Němec J. (2001) Stručný přehled teorie vazeb plynu (metanu) v uhelných slojích a výsledky vybraných experimentů. In: Komplexní zhodnocení programu CBM - MS (ed. P Müller): 2.1.1-2.1.12. Czech Geological Survey.
  • 28. Kováè M., Kováè P., Marko F., Karoli S., Janoèko J. (1995) The East Slovakian Basin - a complex back-arc basin. Tectonophysics, 252: 453-466.
  • 29. Kováè M., Andreyeva-Grigorovich A., Bajraktarevic Z., Brzobohatý R., Filipescu S., Fodor L., Harzhauser M., Nagymarosi A., Oszczypko N., Pavelic D., Rögl F., Saftic B., Sliva L., Studencka B. (2007) Badenian evolution of the Central Paratethys Sea paleogeography, climate and eustatic sea-level changes. Geologica Carpathica, 58 (6): 579-606.
  • 30. Krzywiec P. (2006) Structural inversion of the Mid-Polish Trough (NW and central segments) lateral variations in timing structural style. Geological Quarterly, 51 (1): 131-168.
  • 31. Kuchariè L. (2009) Case for CO2 geological storage - site Bzovík, Central Slovakia Volcanic Area. Slovak Geological Magazin: 73-80.
  • 32. Lagneau V., Pipart A., Catalette H. (2005) Reactive transport modeling of CO2 sequestration in deep saiine aquiters. Oil Gas Sciences Technology, 60 (2): 231-247.
  • 33. Law D.H.-S., Bachu S. (1996) Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin. Energy Conversion and Management, 37: 1167-1174.
  • 34. Leszczyński K. (2012) The internal geometry and lithofacies pattern of the Upper Cretaceous-Danian sequence in the Polish Lowlands. Geological Quarterly, 56 (2): 363-386.
  • 35. Lokhorst A., Wildenborg T. (2005) Introduction on CO2 geological storage, classitication of storage options, oil and gas science and technology. Rev. IFP, 60 (3): 513-515.
  • 36. Mackenzie F.T., Lerman A. (2006) Carbon in the Geobiosphere - Earth's Outer Shell. Springer.
  • 37. Malkovský M. (1987) The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics, 137 (1-4): 31-42.
  • 38. Mazzotti M., Pini R., Storti G. (2009) Enhanced coalbed methane recovery. Journal of Supercritical Fluids, 47: 619-627.
  • 39. Nehyba S., Šikula J. (2007) Depositional architecture, sequence stratigraphy and geodynamic development of the Carpathian Foredeep (Czech Republic). Geologica Carpathica, 58 (1): 53-69.
  • 40. Oszczypko N. (1998) The western Carpathian foredeep - development of the foreland basin in front of the accretionary wedge and its burial history (Poland). Geologica Carpathica, 49 (6): 415-431.
  • 41. Oszczypko N, Krzywiec P., Popadyuk I., Peryt T. (2006) Carpathian Foredeep Basin (Poland and Ukraine) - its sedimentary, structural and geodynamic evolution. AAPG Memoir, 84: 293-350.
  • 42. Pashin J.C., McIntyre M.R. (2003) Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: implications for carbon sequestration and enhanced coalbed methane recovery. International Journal of Coal Geology, 54: 167-183.
  • 43. Pešek J., Holub V., Malý L., Martínek K., Prouza V., Spudil J., Tásler R. (2001) Geologie a ložiska svrchnopaleozoických limnických pánví ČR. Czech Geological Survey, Prague, Czech Republic.
  • 44. Peters G.P., Marland G., Le Quéré C., Boden T., Canadell J.G., Raupach M.R. (2011) Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nature Climate Change, doi. 10.1038/nclimate1332
  • 45. Pícha F., Stráník Z., Krejèí O. (2006) Geology and hydrocarbon resources of the Outer western Carpathians and their fore land, Czech Republic. AAPG Memoir, 84: 49-176.
  • 46. Pikulski L., Karnkowski P.H., Wolnowski T. (2010) Petroleum geology of the Polish part of the Baltic region - an overview. Geological Quarterly, 54 (2): 131-142.
  • 47. Piller W.E., Decker K., Haas M. (1996) Sedimentologie und Beckendynamik des Wiener Beckens. Berichte der Geologischen Bundesanstalt, 33: 1-41.
  • 48. Podhalańska T., Modliński Z. (2010) Outline of the lithology and depositional features of the lower Paleozoic strata in the Polish part of the Baltic region. Geological Quarterly, 54 (2): 109-121.
  • 49. Polak S., Grimstad A.-A. (2009) Reservoir simulation study of CO2 storage and CO2 -EGR in the Atzbach-Schwanenstadt gas field in Austria. Energy Procedia, 1 (1): 2961-2968.
  • 50. Rasser M.W., Harzhauser M. (2008) Palaeogene and Neogene of Central Europe. In: The Geology of Central Europe, 2: Mesozoic and Cenozoic (ed. T. McCann): 1031-1140. Geological Society of London.
  • 51. Royden L.H. (1985) Vienna Basin: a thin skinned pull-apart basin. SEPM Special Publication, 37: 319-338.
  • 52. Shogenova A., Šliaupa S., Shogenov K., Šliaupiené R., Pomeranceva R., Uibu M., Kuusik R. (2009a) Possibilities for geological storage and mineral trapping of industrial CO2 emissions in the Baltic region. Energy Procedia, 1: 2753-2760.
  • 53. Shogenova A., Šliaupa S., Vaher R., Shogenov K., Pomeranceva R. (2009b) The Baltic Basin: structure, properties of reservoir rocks and capacity for geological storage of CO2. Estonian Journal of Earth Sciences, 58: 259-267.
  • 54. Shogenova A., Shogenov K., Pomeranceva R., Nulle I., Neele F., Hendriks C. (2011) Economic modeli ing of the capture-transport-sink scenario of industrial CO2 emissions: the Estonian-Latvian cross-border case study. Energy Procedia, 4: 2385-2392.
  • 55. Šliaupa S., Laškovas E., Lazauskienè J., Laškova L., Sidorov V. (2004) The petroleum system of the Lithuanian offshore region. Zeitschrift für Angewandte Geologie, Sonderheft, 2: 41-59.
  • 56. Šliaupa S., Satkunas J., Šliaupiené R. (2005) Prospects of CO2 geological sequestration in Lithuania. Geologija, 51: 20-31.
  • 57. Šliaupa S., Shogenova A., Shogenov K., Šliaupiené R., Zabele A., Vaher R. (2008) Industrial carbon dioxide emissions and potential geological sinks in the Baltic States. Oil Shale, 25 (4): 465-484.
  • 58. Stephenson R.A., Dadlez R., Narkiewicz M. (1995) Implications of tectonic subsidence models for crustal structure beneath the Mid-Polish Trough. Studia Geophysica et Geodaetica, 39 (3): 289-297.
  • 59. Stephenson R.A., Narkiewicz M., Dadlez R., van Wees J.-D., Andriessen P. (2003) Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 156: 59-70.
  • 60. Tarkowski R., Uliasz-Misiak B., Wójcicki A. (2008) CO2 storage capacity of deep aquifers and hydrocarbon fields in Poland - EU GeoCapacity Project results. Energy Procedia, 1: 2671-2677.
  • 61. Teir S., Hetland J., Lindeberg E., Torvanger A., Buhr K., Koljonen T., Gode J., Onarheim K., Tjernshaugen A., Arasto A., Liljeberg M., Lehtilä A., Kujanpää L., Nieminen M. (2010) Potential for carbon capture and storage (CCS) in the Nordic region. Espoo 2010. VTT Tiedotteita - Research Notes 2556.
  • 62. US DOE (2007) Carbon Sequestration Ati as of United States and Canada. U.S. Department of Energy, Office of Fossil Energy and National Energy Technology Laboratory.
  • 63. Van Bergen F., Pagnier H. (2001) CO2 sequestration in coal - a potentially clean energy cycle. Greenhouse issues, 56: 3-6.
  • 64. Van den Burgt M.J. (1990) Carbon dioxide disposal from coal based combined cycle power stations in depleted gas fields in the Netherlands. Ministry of VROM, publicationreeks Lucht, 91.
  • 65. White C.M., Stazisar B.R., Granite E.J., Hoffman J.S., Pennline H.W. (2003) Separation and capture of CO2 from large stationary sources and sequestration in geological formations - coalbeds and deep saline aquifers. Journal of the Air and Waste Management Association, 53: 645-715.
  • 66. Willscher B., May F., Tarkowski R., Uliasz-Misiak B., Wójcicki A. (2007) Das EU-Projekt GeoCapacity - der Weg zu einem europaweiten GIS mit CO2-Emittenden und -Speichermöglichkeiten. Zeitschrift für Geologische Wissenschaften, 36: 303-320.
  • 67. Winter E.M., Bergman P.D. (1993) Availability of depleted oil and gas reservoirs for disposal of carbon dioxi de in the United States. Energy Conversion and Management, 34: 1177-1118.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77b72e16-34a7-4800-aced-702b5b5c9905
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.