PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plant-traits: how citizen science and artificial intelligence can impact natural science

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (19 ; 08-11.09.2024 ; Belgrade, Serbia)
Języki publikacji
EN
Abstrakty
EN
Citizen science has emerged as a valuable resource for scientific research, providing large volumes of data for training deep learning models. However, the quality and accuracy of crowd-sourced data pose significant challenges for supervised learning tasks such as plant trait detection. This study investigates the application of AI techniques to address these issues within natural science. We explore the potential of multi-modal data analysis and ensemble methods to improve the accuracy of plant trait classification using citizen science data. Additionally, we examine the effectiveness of transfer learning from authoritative datasets like PlantVillage to enhance model performance on open- access platforms such as iNaturalist. By analysing the strengths and limitations of AI-driven approaches in this context, we aim to contribute to developing robust and reliable methods for utilising citizen science data in natural science.
Rocznik
Tom
Strony
625--630
Opis fizyczny
Bibliogr. 24 poz.,il., tab., wykr.
Twórcy
  • CNR-ISTI, Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy University of Pisa, Second Floor, Largo Bruno Pontecorvo, 3, 56127 Pisa, Italy
  • CNR-ISTI, Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
  • CNR-ISTI, Via Giuseppe Moruzzi, 1, 56124 Pisa, Italy
Bibliografia
  • 1. J. Silvertown, “A new dawn for citizen science,” Trends in ecology & evolution, 2009. http://dx.doi.org/10.1016/j.tree.2009.03.017
  • 2. R. Bonney, C. B. Cooper, J. Dickinson, S. Kelling, T. Phillips, K. V. Rosenberg, and J. Shirk, “Citizen science: a developing tool for expanding science knowledge and scientific literacy,” BioScience, 2009. http://dx.doi.org/10.1525/bio.2009.59.11.9
  • 3. C. L. of Ornithology, “eBird,” last retrieved July 24, 2024. [Online]. Available: https://science.ebird.org/en
  • 4. K. O’Donnell, “iNaturalist,” last retrieved July 24, 2024. [Online]. Available: https://www.inaturalist.org/
  • 5. K. S. Chris Lintott, “Zooniverse,” last retrieved July 24, 2024. [Online]. Available: https://www.zooniverse.org/
  • 6. C. Schiller, S. Schmidtlein, C. Boonman, A. Moreno-Martínez, and T. Kattenborn, “Deep learning and citizen science enable automated plant trait predictions from photographs,” Scientific Reports, 2021. http://dx.doi.org/10.1038/s41598-021-95616-0
  • 7. M. J. Feldman, L. Imbeau, P. Marchand, M. J. Mazerolle, M. Darveau, and N. J. Fenton, “Trends and gaps in the use of citizen science derived data as input for species distribution models: A quantitative review,” PloS one, 2021. http://dx.doi.org/10.1371/journal.pone.0234587
  • 8. S. Wolf, M. D. Mahecha, F. M. Sabatini, C. Wirth, H. Bruelheide, J. Kattge, Á. Moreno Martínez, K. Mora, and T. Kattenborn, “Citizen science plant observations encode global trait patterns,” Nature Ecology & Evolution, 2022. http://dx.doi.org/10.1038/s41559-022-01904-x
  • 9. O. Atkin, J. Kattge, S. Diaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bonisch, E. Garnier, M. Westoby, P. B. Reich et al., “Try-a global database of plant traits,” Global Change Biology, 2011. http://dx.doi.org/10.1111/j.1365-2486.2011.02451.x
  • 10. WorldClim, “WorldClim,” last retrieved July 24, 2024. [Online]. Available: https://www.worldclim.org/
  • 11. T. Kattenborn, “Planttraits2023,” 2023, competition. [Online]. Available: https://kaggle.com/competitions/planttraits2023
  • 12. A. Awsaf, H.-J. Sharma, M. Görner, and T. Kattenborn, “Planttraits2024 - fgvc11,” 2024, competition. [Online]. Available: https://kaggle.com/competitions/planttraits2024
  • 13. A. Bruno, D. Moroni, and M. Martinelli, “Efficient deep learning approach for olive disease classification,” in 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS), 2023. http://dx.doi.org/10.15439/2023F4794
  • 14. S. Woo, S. Debnath, R. Hu, X. Chen, Z. Liu, I. S. Kweon, and S. Xie, “Convnext v2: Co-designing and scaling convnets with masked autoencoders,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023. http://dx.doi.org/10.1109/CVPR52729.2023.01548
  • 15. C. Schiller, “CNN Models, metadata and global trait distribution maps,” dataset Repository. [Online]. Available: https://figshare.com/articles/dataset/CNN_Models_metadata_and_global_trait_distribution_maps/13312040
  • 16. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016. http://dx.doi.org/10.1145/2939672.2939785
  • 17. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: unbiased boosting with categorical features,” Advances in neural information processing systems, 2018. http://dx.doi.org/https://doi.org/10.48550/arXiv.1706.09516
  • 18. S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization strategy to train strong classifiers with localizable features,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019. http://dx.doi.org/10.1109/ICCV.2019.00612
  • 19. A. Bruno, D. Moroni, R. Dainelli, L. Rocchi, S. Morelli, E. Ferrari, P. Toscano, and M. Martinelli, “Improving plant disease classification by adaptive minimal ensembling,” Frontiers in Artificial Intelligence, 2022. http://dx.doi.org/10.3389/frai.2022.868926
  • 20. S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Frontiers in plant science, 2016. http://dx.doi.org/10.3389/fpls.2016.01419
  • 21. Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting deep learning models for tabular data,” Advances in Neural Information Processing Systems, 2021. http://dx.doi.org/10.48550/arXiv.2106.11959
  • 22. P. Soroye, T. Newbold, and J. Kerr, “Climate change contributes to widespread declines among bumble bees across continents,” Science, 2020. http://dx.doi.org/10.1126/science.aax8591
  • 23. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer learning,” Proceedings of the IEEE, 2019. http://dx.doi.org/10.48550/arXiv.1911.02685
  • 24. Z.-A. Huang, Y. Hu, R. Liu, X. Xue, Z. Zhu, L. Song, and K. C. Tan, “Federated multi-task learning for joint diagnosis of multiple mental disorders on mri scans,” IEEE Transactions on Biomedical Engineering, 2022. http://dx.doi.org/10.1109/TBME.2022.3210940
Uwagi
Thematic Sessions: Short Papers
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77b50a96-ca27-4f9e-82b6-0a3ec71b55ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.