PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of the Selected Turbulence Model and Grid Density Degree on the Results of Velocity Distribution Obtained with the Use of the Simulation Program SSIIM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzed the water flow parameters in the local scour created after building stones sills No 3 km 480 + 902 and 4 km 479 + 225 below the Jeziorsko reservoir on the river Warta. The analysis was carried out using the result of field measurements (velocity distributions) and SSIIM (freeware) software. The study of the geometry of the local scour, were used to create a numerical model and implementing it to the SSIIM software. In the research, the impact of grid density on the obtained results was estimated. The results included the qualitative and quantitative assessment. The conducted analysis can be used to determine the movement of sediment in local scour, and can predict the development in time, and also specify the sill stability under different conditions of the water flow.
Rocznik
Strony
106--114
Opis fizyczny
Bibliogr. 24 poz., tab., rys.
Twórcy
  • University of Life Sciences in Poznan, Department of Water and Sanitary Engineering, ul. Piątkowska 92A, 60-649 Poznań, Poland
autor
  • University of Life Sciences in Poznan, Department of Water and Sanitary Engineering, ul. Piątkowska 92A, 60-649 Poznań, Poland
autor
  • University of Life Sciences in Poznan, Department of Water and Sanitary Engineering, ul. Piątkowska 92A, 60-649 Poznań, Poland
Bibliografia
  • 1. Bajkowski S., Lasisz K. 2010. Measurements of river bed and water profile on permeable stone falls. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 19(3) [49] (in Polish).
  • 2. Bennett S.J., Alonso C.V. 2006. Turbulent flow and bed pressure within headcut scour holes due to plane reattached jets. Journal of Hydraulic Research, 44(4), 510–521.
  • 3. Chen Zhicong, Shao Xuejun, Zhang Junwu 2005. Experimental study on the upstream water level rise and downstream scour length of a submerged dam, Journal of Hydraulic Research 43(6), 703–709.
  • 4. D’Agostino V., Ferro V. 2004. Scour on alluvial bed downstream of grade-control structures. Journal of Hydraulic Engineering, 130(1), 24–37.
  • 5. Domański M. 2014. Numerical and experimental analysis in a mixer with a stirrer an eccentric high-speed one. Doctoral thesis, ZUT, Szczecin. (in Polish).
  • 6. Dargahi B. 2003. ‘Scour development downstream of a spillway, Journal of Hydraulic Research, 41(4), 417–426.
  • 7. Espa P., Sybilla S. 2006. Experimental study of the scour regimes downstream of apron for intermediate tailwater depths, River Flow 2006, Taylor & Fransis Group, London, 1715–17.
  • 8. Gamal A.A.A., Hassan I.M., Shim M.A. 2006. 3-D numerical simulation of flow and clear water scour by interaction between bridge piers, Tenth International Water Technology Conference, IWTC10, Aleksandria, Egypt, 899–915.
  • 9. Hämmerling M., Zawadzki P., Przedwojski B. 2007. Flow-velocity distribution below a hydraulic structure. Nauka Przyroda Technologie, 1(2), 23. (in Polish).
  • 10. Hämmerling M., Walczak N., Szalkiewicz E. 2015. Using mathematical model SSIIM to analysis of velocity distributions: Jeziorsko reservoir on the Warta river. Acta Scientiarum Polonorum. Formatio Circumiectus, 14(2) (in Polish).
  • 11. Jafari E., Hassunizadeh H., Zaredehdasht E., Kiuani M. 2011. Estimating Scour Depth Around Bridge Piles Using SSIIM Software and Comparing its Results with Physical Model Results, Australian Journal of Basic and Applied Sciences, 5(7), 167–173.
  • 12. Kania M. 2011. Modelling the exhaust gases behavior from turbinę engines in rotor wake vortex in vertical helicopter flight. Modelowanie Inżynierskie, 11(42), 201–208 (in Polish).
  • 13. Kells J.A., Balachandar R., Hagel K.P. 2001. Effect of grain size in local scour below a sluice gate, Canada Journal Civil Engineering, 28, 440–451.
  • 14. Lenzi M.A., Marion A., Comiti F., Gaudio R., 2002. Local scouring in low and high gradient streams at bed sills, Journal of Hydraulic Research, 40(6), 731–739.
  • 15. Lee C.H., Xu C., Huang Z. 2017. A three-phase flow simulation of local scour caused by a submerged wall jet with a water-air interface. Advances in Water Resources. (in press)
  • 16. Migoń P. 2006. Geomorphology. Wydawnictwo Naukowe PWN (in Polish).
  • 17. Musiał M., Karcz J. 2015. Evaluation of turbulence model impact on the numerical simulation results of two-phase gas – liquid flow in a stirred tank with the CD 6 impeller. Inżynieria i Aparatura Chemiczna (6), 342–343 (in Polish).
  • 18. Nordila A., Thamer M., Melville B.W., Faisal A., Badronnisa Y. 2017. Modelling the Effect of Sediment Coarseness on Local Scour at Wide Bridge Piers. Pertanika Journal of Science & Technology, 25(1), 191–200.
  • 19. Olsen N.R.B. 2014. A three dimensional numerical model for simulation of sediments movements in water intakes with multiblock options – Users’ Manual. The Norwegian University of Science and Technology.
  • 20. Siwicki P., Urbański J. 2007. Numerical simulation of scour below the dam, Materials for XII Dam Monitoring International Conference, Stare Jabłonki, 19–22 June 2007. Institute of Meteorology and water management, Warsaw, 285–293.
  • 21. Török G.T., Baranya S., Rüther N. 2017. 3D CFD Modeling of Local Scouring, Bed Armoring and Sediment Deposition. Water, 9(1), 56 (in Polish).
  • 22. Walczak N., Walczak Z., Hämmerling M., Spychala M., Niec J. 2016. Head losses in small hydropower plant trash racks (SHP). Acta Scientiarum Polonorum-Formatio Circumiectus, 15(4), 369–382.
  • 23. Wilson C.A.M.E., Baxall J.B., Guymer I., Olsen N.R.B. 2003. Validation of a Three-Dimensional Numerical Code in the Simulation of Pseudo-Natural Meandering Flows, Journal of Hydraulic Engineering, Vol. 129, No. 10.
  • 24. Xiong W., Cai C.S., Kong B., Kong X. 2014. CFD simulations and analyses for bridge-scour development using a dynamic-mesh updating technique. Journal of Computing in Civil Engineering, 30(1), 04014121.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77b35f6d-9970-49f6-8a59-f3776e424095
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.