Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Two coupling superconducting qubits are studied for the quantum concurrence, discord, and Pancharatnam phase, for the X and Y states under the dephasing and instantaneous decay environment as well as their couplings. We find that the X and Y states are special mixed states according to the Bloch radius. In general, the larger the environment and phonon number are at the larger region of time, the larger the quantum concurrence and discord are. But we find that the environment correlations are helpful to implement the quantum computation. The Pancharatnam phases provide a way to distinguish the X and Y states.
Czasopismo
Rocznik
Tom
Strony
511--537
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
- Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, P.R. China
autor
- College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, P.R. China
Bibliografia
- [1] CIRAC J.I., ZOLLER P., Quantum computations with cold trapped ions, Physical Review Letters 74(20), 1995, pp. 4091–4094, DOI:10.1103/PhysRevLett.74.4091;
- CIRAC J.I., ZOLLER P., A scalable quantum computer with ions in an array of microtraps, Nature 404, 2000, pp. 579–581, DOI:10.1038/35007021.
- [2] WOOTTERS W.K., Entanglement of formation of an arbitrary state of two qubits, Physical Review Letters 80(10), 1998, pp. 2245–2248, DOI:10.1103/PhysRevLett.80.2245.
- [3] HENDERSON L., VEDRAL V., Classical, quantum and total correlations, Journal of Physics A: Mathematical and General 34(35), 2001, pp. 6899–6905, DOI:10.1088/0305-4470/34/35/315.
- [4] OLLIVIER H., ZUREK W.H., Quantum discord: a measure of the quantumness of correlations, Physical Review Letters 88(1), 2002, article 017901, DOI:10.1103/PhysRevLett.88.017901.
- [5] WANG Z.S., Geometric quantum computation and dynamical invariant operators, Physical ReviewA 79(2), 2009, article 024304, DOI:10.1103/PhysRevA.79.024304.
- [6] WANG Z.S., LIU G.Q., JI Y.H., Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system, Physical Review A 79(5), 2009, article 054301, DOI:10.1103/PhysRevA.79.054301.
- [7] WANG Z.S., WU C., FENG X.-L., KWEK L.C., LAI C.H., OH C.H., VEDRAL V., Nonadiabatic geometric quantum computation, Physical Review A 76(4), 2007, article 044303, DOI:10.1103/PhysRevA.76.044303.
- [8] TROIANI F., HOHENESTER U., MOLINARI U., Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing, Physical Review B 62(4), 2000, pp. R2263–R2266, DOI:10.1103/PhysRevB.62.R2263.
- [9] BIOLATTI E., IOTTI R.C., ZANARDI P., ROSSI F., Quantum information processing with semiconductor macroatoms, Physical Review Letters 85(26), 2000, pp. 5647–5650, DOI:10.1103/PhysRevLett.85.5647.
- [10] FLINDT C., SØRENSEN A.S., LUKIN M.D., TAYLOR J.M., Spin-photon entangling diode, Physical Review Letters 98(24), 2007, article 240501, DOI:10.1103/PhysRevLett.98.240501.
- [11] CORRIELLI G., CRESPI A., GEREMIA R., RAMPONI R., SANSONI L., SANTINELLI A., MATALONI P., SCIARRINO F., OSELLAME R., Rotated waveplates in integrated waveguide optics, Nature Communications 5, 2014, article 4249, DOI:10.1038/ncomms5249.
- [12] PIRES D.P., SILVA I.A., DEAZEVEDO E.R., SOARES-PINTO D.O., FILGUEIRAS J.G., Coherence orders, decoherence, and quantum metrology, Physical Review A 98(3), 2018, article 032101, DOI:10.1103/PhysRevA.98.032101.
- [13] YU Y.X., FU G.L., GUO L.P., PAN H., WANG Z.S., Quantum correlations of coupled superconducting two-qubit system in various cavity environments, Physica C 495, 2013, pp. 88–108, DOI:10.1016/j.physc.2013.08.007.
- [14] FU G.L., CHEN Z.Q., RAO H.Y., GUO L.P., WANG Z.S., Fidelity and entanglement with environment effect, International Journal of Theoretical Physics 53(1), 2014, pp. 146–158, DOI:10.1007/s10773-013-1792-z.
- [15] HUANG Y.-Y., WU Y.-K., WANG F., HOU P.-Y., WANG W.-B., ZHANG W.-G., LIAN W.-Q., LIU Y.-Q., WANG H.-Y., ZHANG H.-Y., HE L., CHANG X.-Y., XU Y., DUAN L.-M., Experimental realization of robust geometric quantum gates with solid-state spins, Physical Review Letters 122(1), 2019, article010503, DOI:10.1103/PhysRevLett.122.010503.
- [16] CHIORESCU I., NAKAMURA Y., HARMANS C.J.P.M., MOOIJ J.E., Coherent quantum dynamics of a superconducting flux qubit, Science 299(5614), 2003, pp. 1869–1871, DOI:10.1126/science.1081045.
- [17] VIOLA L., KNILL E., LLOYD S., Dynamical decoupling of open quantum systems, Physical Review Letters 82(12), 1999, pp. 2417–2421, DOI:10.1103/PhysRevLett.82.2417.
- [18] WANG Z.S., LIU Q., Geometric phase and spinorial representation of mixed state, Physics Letters A377(45–48), 2013, pp. 3272–3278, DOI:10.1016/j.physleta.2013.10.023.
- [19] XIAO D., CHANG M.C., NIU Q., Berry phase effects on electronic properties, Reviews of Modern Physics 82(3), 2010, pp. 1959–2007, DOI:10.1103/RevModPhys.82.1959.
- [20] WANG Z.S., PAN H., Geometric phase carried by the observables and its application to quantum computation, Quantum Information and Computation 15(11–12), 2015, pp. 951–961.
- [21] FALCI G., FAZIO R., MASSIMO PALMA G., SIEWERT J., VEDRAL V., Detection of geometric phases in superconducting nanocircuits, Nature 407, 2000, pp. 355–358, DOI:10.1038/35030052.
- [22] EKERT A., ERICSSON M., HAYDEN P., INAMORI H., JONES J.A., OI D.K.L., VEDRAL V., Geometric quantum computation, Journal of Modern Optics 47(14–15), 2000, pp. 2501–2513.
- [23] STEFFEN M., ANSMANN M., BIALCZAK R.C., KATZ N., LUCERO E., MCDERMOTT R., NEELEY M., WEIG E.M., CLELAND A.N., MARTINIS J.M., Measurement of the entanglement of two superconducting qubits viastate tomography, Science 313(5792), 2006, pp. 1423–1425, DOI:10.1126/science.1130886.
- [24] TANG L., LIU F., Generation of multipartite entangled coherent states via a superconducting charge qubit, Physics Letters A 378(30–31), pp. 2014–2078, 2074, DOI:10.1016/j.physleta.2014.05.054.
- [25] KIKTENKO E.O., FEDOROV A.K., STRAKHOV A.A., MAN’KO V.I., Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits, Physics Letters A 379(22–23), 2015, pp. 1409–1413, DOI:10.1016/j.physleta.2015.03.023.
- [26] NUNES L.H.C.M., FARIAS R.L.S., MARINO E.C., Superconducting and excitonic quantum phase transitions in doped Dirac electronic systems, Physics Letters A 376(5), 2012, pp. 779–784, DOI:10.1016/j.physleta.2011.12.030.
- [27] YABU-UTI B.F.C., ROVERSI J.A., Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time, Physics Letters A 375(36), 2011, pp. 3171–3175, DOI:10.1016/j.physleta.2011.07.016.
- [28] OH S., Geometric phases and entanglement of two qubits with XY type interaction, Physics Letters A 373(6), 2009, pp. 644–647, DOI:10.1016/j.physleta.2008.12.023.
- [29] KIKTENKO E., FEDOROV A., Tomographic causal analysis of two-qubit states and tomographic discord, Physics Letters A 378(24–25), 2014, pp. 1704–1710, DOI:10.1016/j.physleta.2014.04.036.
- [30] KONYK W., GEA-BANACLOCHE J., Passive, deterministic photonic conditional-phase gate via two-level systems, Physical Review A 99(1), 2019, article 010301(R), DOI:10.1103/PhysRevA.99.010301.
- [31] JAFARI R., Quantum renormalization group approach to geometric phases in spin chains, Physics Letters A 377(45–48), 2013, pp. 3279–3282, DOI:10.1016/j.physleta.2013.10.034.
- [32] ZHANG X.X., ZHANG A.P., LI F.L., Detecting the multi-spin interaction of an XY spin chain by the geometric phase of a coupled qubit, Physics Letters A 376(30–31), 2012, pp. 2090–2095, DOI:10.1016/j.physleta.2012.05.018.
- [33] GONG L.Y., ZHU H., ZHAO S.M., CHENG W.W., SHENG Y.B., Quantum discord and classical correlation signatures of mobility edges in one-dimensional aperiodic single-electron systems, Physics Letters A 376(45), 2012, pp. 3026–3032, DOI:10.1016/j.physleta.2012.09.049.
- [34] GIROLAMI D., How difficult is it to prepare a quantum state?, Physical Review Letters 122(1), 2019, article 010505, DOI:10.1103/PhysRevLett.122.010505.
- [35] BLAIS A., GAMBETTA J., WALLRAFF A., SCHUSTER D.I., GIRVIN S.M., DEVORET M.H., SCHOELKOPF R.J., Quantum-information processing with circuit quantum electrodynamics, Physical Review A 75(3), 2007, article 032329, DOI:10.1103/PhysRevA.75.032329.
- [36] BLAIS A., HUANG R.-S., WALLRAFF A., GIRVIN S.M., SCHOELKOPF R.J., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Physical Review A 69(6), 2004, article 062320, DOI:10.1103/PhysRevA.69.062320.
- [37] MAJER J., CHOW J.M., GAMBETTA J.M., KOCH J., JOHNSON B.R., SCHREIER J.A., FRUNZIO L., SCHUSTER D.I., HOUCK A.A., WALLRAFF A., BLAIS A., DEVORET M.H., GIRVIN S.M., SCHOELKOPF R.J., Coupling superconducting qubits via a cavity bus, Nature 449, 2007, pp. 443–447, DOI:10.1038/nature06184.
- [38] LINDBLAD G., On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48, 1976, pp. 119–130, DOI:10.1007/BF01608499.
- [39] XIE B., ZENG G.R., PAN H., WANG Z.S., Pancharatnam phase and quantum correlation for two-qubit system in correlated dephasing environment, International Journal of Theoretical Physics 55, 2016, pp. 1474–1491, DOI:10.1007/s10773-015-2786-9.
- [40] XUE L.Y., YU Y.X., CAI X.Y., PAN H., WANG Z.S., Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect, Physica C 520, 2016, pp. 8–18, DOI:10.1016/j.physc.2015.11.004.
- [41] EINSTEIN A., PODOLSKY B., ROSEN N., Can quantum-mechanical description of physical reality be considered complete?, Physical Review 47(10), 1935, pp. 777–780, DOI:10.1103/PhysRev.47.777.
- [42] SCHRÖDINGER E., Discussion of probability relations between separated systems, Mathematical Proceedings of the Cambridge Philosophical Society 31(4), 1935, pp. 555–565, DOI:10.1017/S0305004100013554;
- SCHRÖDINGER E., Probability relations between separated systems, Mathematical Proceedings of the Cambridge Philosophical Society 32(3), 1936, pp. 446–452, DOI:10.1017/S0305004100019137.
- [43] BELL J.S., On the Einstein Podolsky Rosen paradox, Physics Physique Fizika 1(3), 1964, pp. 195–200, DOI:10.1103/PhysicsPhysiqueFizika.1.195.
- [44] ADAMI C., CERF N.J., von Neumann capacity of noisy quantum channels, Physical Review A 56(5), 1997, pp. 3470–3483, DOI:10.1103/PhysRevA.56.3470.
- [45] KÜBLER O., ZEH H.D., Dynamics of quantum correlations, Annals of Physics 76(2), 1973, pp. 405–418, DOI:10.1016/0003-4916(73)90040-7.
- [46] LUO S., Quantum discord for two-qubit systems, Physical Review A 77(4), 2008, article 042303, DOI:10.1103/PhysRevA.77.042303.
- [47] ALI M., RAU A.R.P., ALBER G., Quantum discord for two-qubit X states, Physical Review A 81(4), 2010, article 042105, DOI:10.1103/PhysRevA.81.042105.
Uwagi
1. W bibliografii rozdzielono poz. 1 i 42.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77adc4f1-b177-41e9-9754-012ded29762f