PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Significant waste properties in terms of applicability in the power industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the article is to present the physical and chemical properties of the refuse derived fuel (RDF) substrates, which have a significant impact on the energy recovery process in power plants. The experimental part includes technical (moisture and ash content, net and gross calorific values) and elemental analyses (sulfur, chlorine and mercury content), biomass and non-biomass concentration in the samples. In order to carry out the analysis of reactor slagging and fouling risk, chemical composition of the ash and characteristic ash fusion temperatures were determined. The waste samples are heterogeneous material and their properties are diversified – the moisture content ranges from 1.8 to 29.2 wt. %, the net calorific value from 17.231 to 28.307 MJ/kg, the ash content in the samples from 7.7 to 31.2 wt. %. The S content is in the range from 0.04 to 0.58 wt. %, the Cl content from 0.58 to 2.11 wt. % and the Hg content in the samples from 0.09 to 0.20 mg/kg. It can be observed, that the tested waste is a demanding fuel, because of its unfavorable fouling and slagging properties, which are directly related to the content of oxides with the basic properties.
Rocznik
Strony
75--85
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze
  • Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze
Bibliografia
  • [1] Central Statistical Office of Poland, Environment 2018, Regional and Environmental Surveys Department, [online] http://www.stat.gov.pl (accessed on 21.01.2019).
  • [2] PIRES A., MARTINHO G., CHANG N.-B., Solid waste management in European countries. A review of system analysis techniques, J. Environ. Manage., 2011, 92, 4, 1033.
  • [3] GALLARDO A., CARLOS M., BOVEA M.S., COLOMER F.J., ALBARRAN F., Analysis of refuse-derived fuel from the municipal solid waste reject fraction and its compliance with quality standard, J. Clean. Prod., 2014, 83, 118.
  • [4] TRULLI E., FERRONATO N., TORRETTA V., PISCITELLI M., MASI M., MANCINI I., Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates, Waste Manage., 2018, 71, 556.
  • [5] EDO-ALCON N., GALLARDO A., COLOMER-MENDOZA F.J., Characterization of SRF from MBT plants: Influence of the input waste and of the processing technologies, Fuel Proc. Techn., 2016, 153, 19.
  • [6] BRAS I., SILVA M.E., LOBO G., CORDEIRO A., FARIA M., DE LEMOS T.L., Refuse Derived Fuel from Municipal Solid Waste rejected fractions – a Case Study, Energy Proc., 2017, 120, 349.
  • [7] WAGLAND S.T., KILGALLON P., COVENEY R., GARG A., SMITH R., LONGHURST P.J., POLLARD S.J.T., SIMMS N., Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor, Waste Manage., 2011, 31, 1176.
  • [8] ALURI S., SYED A., FLICK D.W., MUZZY J.D., SIEVERS C., AGRAWAL P.K., Pyrolysis and gasification studies of model refuse derived fuel (RDF) using thermogravimetric analysis, Fuel Proc. Techn., 2018, 17, 154.
  • [9] Voivodship Reports, 2015–2017, Province reports on waste management, available on the websites of provincial self-governments or made available after submitting a request.
  • [10] WILÉN C., SALOKOSKI P., KURKELA E., SIPILÄ K., Finnish expert report on best available techniques in energy production from solid recovered fuels, Finnish Environment Institute [online] https://core.ac.uk/download/pdf/16390689.pdf (accessed on 19.11.2019)
  • [11] ZHAO L., GIANNIS A., LAM W.-Y., LIN S.-X., YIN K., YUAN G.-A., WANG J.Y., Characterization of Singapore RDF resources and analysis of their heating value, Sust. Environ. Res., 2016, 26, 51.
  • [12] AKDAG A.S., ATIMTAY A., SANIN F.D., Comparison of fuel value and combustion characteristics of two different RDF samples, Waste Manage., 2016, 47, 217.
  • [13] RADA E.C., ANDEROTTOLA G., RDF/SRF: Which perspective for its future in the EU, Waste Manage., 2012, 32, 1059.
  • [14] IACOVIDOU E., HAHLADAKIS J., DEANS I., VELIS C., PURNELL P., Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional resource recovery value, Waste Manage., 2018, 73, 535.
  • [15] DUCZKOWSKA-KĄDZIEL A., DUDA J., Municipal and industrial waste as alternative raw materials and fuels in the process of cement production, Prace Instytutu Ceramiki i Materiałów Budowlanych, 2014, 7, 18, 172 (in Polish).
  • [16] DEL ZOTTO L., TALLINI A., DI SIMONE G., MOLINARI G., CEDOLA L., Energy enhancement of solid recovered fuel within systems of conventional thermal power generation, Energy Proc., 2015, 81, 319.
  • [17] WASIELEWSKI R., NOWAK M., Report Alternative fuels market in Poland in the context of transboundary waste shipments, Zabrze, November 2018 (unpublished, in Polish).
  • [18] European Standard EN 15357:2011, Solid recovered fuels – Terminology, definitions and description.
  • [19] Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council 2014/955/EU.
  • [20] KALISZ S., CIUKAJ S., MROCZEK K., TYMOSZUK M., WEJKOWSKI R., PRONOBIS M., KUBICZEK H., Fullscale study on halloysite fireside additive in 230 t/h pulverized coal utility boiler. Energy, 2015, 92, (1) 33.
  • [21] ZUWAŁA J., ŚCIĄŻKO M., Full-scale co-firing trial tests of sawdust and bio-waste in pulverized coalfired 230 t/h steam boiler, Biomass Bioen., 2010, 34 (8), 1165.
  • [22] BRYERS R., Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels, Progr. Energy Comb. Sci., 1996, 22, (1) 29.
  • [23] Phyllis2, database for biomass and waste, [online] https://phyllis.nl/ (accessed on 23.28.2019).
  • [24] HU Y., CHENG H., TAO S., The growing importance of waste-to-energy incineration in China’s anthropogenic mercury emissions: Emission inventories and reduction strategies, Ren. Sust. Energy Rev., 2018, 97, 119.
  • [25] RÓG L., Influence of petrographic and chemical structure of hard coal on ash fusibility temperature, Prace Naukowe GIG Górnictwo i Środowisko, 2003, 1, 73 (in Polish).
  • [26] KRAWCZYK P., SZCZYGIEŁ J., Analysis of the conditions of using alternative fuel for electricity and heat generation in the conditions of a district heating company, Rynek Energii, 2013, 109 (6), 91 (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77aaf28d-a7f7-475d-9e52-e042a00888a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.