Identyfikatory
Warianty tytułu
Metal complexes of large imine and amine macrocycles
Języki publikacji
Abstrakty
Macrocyclic complexes continue to attract considerable attention due to their significance in biological systems, catalysis, medical diagnostics and other fields. While the most intensively studied macrocycles containing donor nitrogen atoms are tetraazamacrocycles such as porphyrins or cyclen derivatives, larger macrocyclic ligands containing up to 18 (or even more) donor atoms are also known. Due to their enlarged size, these macrocycles can bind large metal ions such as lanthanide(III) ions or bind multiple metal ions. In this review a subclass of large macrocycles will be discussed i.e. macrocyclic amines and imines that can be generated in the condensation of diamines with dicarbonyl compounds, in particular with 2,6-diformylpyridine or 2,6-diformylphenols. These macrocycles of various sizes lead to a rich variety of structures of metal complexes, including polynuclear complexes. Moreover, macrocycles derived from enantiopure trans-1,2- diaminocylohexane form chiral metal complexes that exhibit unusual effects such as helicity inversion, enantioselective self-recognition or enantiodiscrimination of organic guest molecules.
Wydawca
Czasopismo
Rocznik
Tom
Strony
603--629
Opis fizyczny
Bibliogr. 104 poz., schem.
Twórcy
autor
- Wydział Chemii Uniwersytetu Wrocławskiego, ul. F. Joliot-Curie 15, 50-383 Wrocław
Bibliografia
- [1] L.F. Lindoy, K.-M. Park, S.S. Lee, Chem. Soc. Rev., 2013, 42, 1713.
- [2] F.-F. Chang, K. Zhang, W. Huang, Dalton Trans., 2019, 48, 363.
- [3] W. Radecka-Paryzek, V. Patroniak, J. Lisowski, Coord. Chem. Rev., 2005, 249, 2156.
- [4] M. Kwit, J. Grajewski, P. Skowronek, M. Zgorzelak, J. Gawroński, Chem. Rec., 2019, 19, 213.
- [5] S. Zhang and L. Zhao, Acc. Chem. Res., 2018, 51, 2535.
- [6] P.A. Vigato, V. Peruzzo, S. Tamburini, Coord. Chem. Rev., 2012, 256, 953.
- [7] P.A. Vigato, S. Tamburini, L. Bertolo, Coord. Chem. Rev., 2007, 251, 1311.
- [8] P.A. Vigato, S. Tamburini, Coord. Chem. Rev., 2004, 248, 1717.
- [9] C.D. Meyer, C.S. Joiner, J.F. Stoddart, Chem. Soc. Rev., 2007, 36, 1705.
- [10] N.E. Borisova, M.D. Reshetova and Y.A. Ustynyuk, Chem. Rev., 2007, 107, 46.
- [11] L.J. Chen, H.B. Yang, M. Shionoya, Chem. Soc. Rev., 2017, 46, 2555.
- [12] H. Jędrzejewska, A. Szumna, Chem. Rev. 2017, 117, 4863.
- [13] J. Crassous, Chem. Commun. 2012, 48, 9684.
- [14] W. Radecka-Paryzek, Inorg. Chim. Acta 1980, 45, 147.
- [15] A B. Canaj, S. Dey, E.R. Mart, C. Wilson, G. Rajaraman, M. Murrie, Angew. Chem. Int. Ed. 2019, 58, 14146.
- [16] M.A. Fik-Jaskółka, I. Pospieszna-Markiewicz, G.N. Roviello, M. Kubicki, W. Radecka-Paryzek, V. Patroniak, Inorg. Chem. 2021, 60, 2122.
- [17] P. Starynowicz,J. Lisowski, Polyhedron, 2015, 85, 232.
- [18] J. Lisowski, J. Mazurek Polyhedron 2002, 21, 811.
- [19] J. Lisowski, S. Ripoli, L. Di Bari, Inorg. Chem. 2004, 43, 1388.
- [20] J. Lisowski, P. Starynowicz, Inorg. Chem. Commun. 2003, 6, 593.
- [21] J. Lisowski, Inorg. Chem., 2011, 50, 5567.
- [22] P. Starynowicz, J. Lisowski, Dalton Trans, 2019, 48, 8717.
- [23] S.W.A. Bligh, N. Choi, E.G. Evagorou, M. McPartlin, K.N. White, J. Chem. Soc., Dalton Trans., 2001, 3169.
- [24] A. Krezel, J. Lisowski, J. Inorg. Biochem., 2012, 107, 1.
- [25] J. Gregoliński, J. Lisowski, T. Lis, Org. Biomol. Chem., 2005, 3, 3161.
- [26] J. Gregoliński, A. Kochel, J. Lisowski Polyhedron 2006, 25, 2745.
- [27] J. Gregoliński, К. Ślepokura, Polyhedron, 2020, 181, 114433.
- [28] J. Gregoliński, К. Ślepokura, Polyhedron, 2018,147, 15.
- [29] J. Lisowski, J. Mazurek Polyhedron 2003, 22, 2877.
- [30] Z.H. Li, Y.Q. Zhai, W.P. Chen, Y.S. Ding, Y.Z. Zheng, Chem. Eur. J., 2019, 25, 16219.
- [31] M. Paluch, P. Gawryszewska, T. Lis, J. Lisowski, Polyhedron, 2010, 29, 3387.
- [32] J. Gregoliński, К. Ślepokura, J. Lisowski, Inorg. Chem. 2007, 46, 7923.
- [33] A. Gerus, K. Ślepokura, J. Lisowski, Inorg. Chem., 2013, 52, 12450.
- [34] A. Gerus, K. Slepokura, J. Lisowski, Polyhedron, 2019, 170, 115.
- [35] K. Wolska, J. Janczak, P. Gawryszewska, J. Lisowski Polyhedron, 2021, 198, 115057.
- [36] R. Lamelas, R. Bastida, E. Labisbal, A. Macias, T. Pereira, P. Perez-Lourido, L. Valencia, J.M. Vila, C. Nunez, Polyhedron, 201, 160,180.
- [37] R. Lamelas, R. Bastida, E. Labisbal, A. Macias, T. Pereira, P. Perez-Lourido, L. Valencia, J.M. Vila, C. Nunez, Polyhedron, 2019, 160, 180.
- [38] A. Nonat, D. Esteban-Gomez, L. Valencia, P. Perez-Lourido, J.L. Barriada, L.J. Charbonniere, C. Platas-Iglesias, Dalton Trans, 2019, 48, 4035.
- [39] G. Castro, M. Regueiro-Figueroa, D. Esteban-Gomez, P. Perez-Lourido, C. Platas-Iglesias, L. Valencia, Inorg. Chem., 2016, 55,3490.
- [40] K.M. Kirschner, S.C. Ratvasky, M. Pink, J.M. Zaleski, Inorg. Chem., 2019, 58, 9225.
- [41] (a) P. Starynowicz, J. Lisowski, Chem. Commun., 1999, 769; (b) E. Mieczynska, J. Lisowski, A.M. Trzeciak, Inorg. Chim. Acta, 2015, 431, 145.
- [42] F.-X. Shen, K. Pramanik, P. Brandäo, Y.-Q. Zhang, N.C. Jana, X.-Y. Wang, A. Panja Dalton Trans., 2020, 49, 14169.
- [43] P. Gawryszewska, J. Lisowski, Inorg, Chim, Acta, 2012, 383, 220.
- [44] M. Hołynska, P. Gawryszewska, J. Lisowski, Inorg. Chem. Commun., 2016, 71, 27.
- [45] J. Lisowski, P. Starynowicz, Inorg. Chem., 1999, 38, 1351.
- [46] K. Wang, T.J. Prior, C. Redshaw, Chem. Commun., 2019, 55, 11279.
- [47] Y. Sakata, M. Tamiya, M. Okada, S. Akine, J. Am. Chem. Soc. 2019, 141,15597.
- [48] Y. Sakata, M. Okada, M. Tamiya,S. Akine, Chem. Eur. J., 2020, 26, 7595.
- [49] Y. Sakata, C. Murata, S. Akine, Nat. Commun. 2017, 8, 16005.
- [50] P.-C. Zhao, F.-F. Chang, F.-D. Feng, W. Huang Inorg. Chem. 2020, 59, 7504.
- [51] K. Zhang, H. F. Qian, L. Zhang, W. Huang, Inorg. Chem., 2015, 54, 675.
- [52] K. Zhang, C. Jin, H.Q. Chen, G. Yin, W. Huang, Chem. - Asian J., 2014, 9, 2534.
- [53] G.F. Feng, Y.S. Shi, L. Zhang, R.G. Shi, W. Huang, R.Y. Wang, Sci. Rep., 2017, 7, 15881.
- [54] K. Zhang, L. Zhang, S. Zhang, Y. Hu, Y.X. Zheng, W. Huang, Inorg. Chem., 2015, 54, 5295.
- [55] C. Romain, J. A. Garden, G. Trott, A. Buchard, A. J. P. White, C. K. Williams, Chem. Eur. J., 2017, 23, 7367.
- [56] P.L. Arnold, C.J. Stevens, J.H. Farnaby, M.G. Gardiner, G.S. Nichol, J.B. Love, J. Am. Chem. Soc. 2014, 136, 29, 10218.
- [57] T. Cadenbach, J.R. Pankhurst, T.A. Hofmann, M. Curcio, P.L. Arnold, J.B. Love, Organometallics 2015, 34, 2608.
- [58] J.W. Leeland, F.J. White, J.B. Love, J. Am. Chem. Soc., 2011, 133, 7320.
- [59] P.L. Arnold, E. Hollis, G.S. Nichol, J.B. Love, J.-C. Griveau, R. Caciuffo, N. Magnani, L. Maron, L. Castro, A. Yahia, S.O. Odoh, G. Schreckenbach, J. Am. Chem. Soc., 2013, 135, 3841.
- [60] J.R. Pankhurst, S. Paul, Y.Q. Zhu, C.K. Williams, J.B. Love, Dalton Trans., 2019, 48, 4887.
- [61] A. Thevenon, C. Romain, M.S. Bennington, A.J.P. White, H.J. Davidson, S. Brooker, C.K. Williams, Angew. Chem. Int. Ed., 2016, 55, 8680.
- [62] J.L. Sessler, E. Katayev, G.D. Pantos, P. Scherbakov, M.D. Reshetova, V.N. Khrustalev, V.M. Lynch, Y.A. Ustynyuk, J. Am. Chem. Soc., 2005, 127, 11442.
- [63] J. Gregoliński, J. Lisowski, Angew. Chem. Int. Ed., 2006, 45, 6122.
- [64] J. Gregoliński, P. Starynowicz, K.T. Hua, J.L. Lunkley, G. Muller, J. Lisowski, J. Am. Chem. Soc., 2008, 130, 17761.
- [65] C.Q. Zhao, J.S. Ren, J. Gregoliński, J. Lisowski and X.G. Qu, Nucleic Acids Research, 2012, 40, 8186.
- [66] J. Gregoliński, T. Lis, M. Cyganik, J. Lisowski, Inorg. Chem., 2008, 47, 11527.
- [67] J. Gregoliński, К. Ślepokura, J. Lisowski, Dalton Trans., 2015, 44, 16345.
- [68] M. Loffler, J. Gregoliński, M. Korabik, T. Lis, J. Lisowski, Dalton Trans., 2016, 45, 15586.
- [69] A. Gonzalez-Alvarez, I. Alfonso, J. Cano, P. Diaz, V. Gotor, V. Gotor-Fernandez, E. Garcia-Espana, S. Garcia-Granda, H. R. Jimenez, F. Lloret, Angew. Chem. Int. Ed., 2009, 48, 6055.
- [70] J. Gajewy, J. Gawroński and M. Kwit, Org. Biomol. Chem., 2011, 9, 3863.
- [71] J.-C. Jiang, Z.-L. Chu, W. Huang, G. Wang, X-Z. You, Inorg. Chem. 2010, 49, 5897.
- [72] A. Sarnicka, P. Starynowicz, J. Lisowski, Chem. Commun., 2012, 48, 2237.
- [73] J. Janczak, D. Prochowicz, J. Lewinski, D. Fairen-Jimenez, T. Bereta, J. Lisowski, Chem. Eur. J., 2016, 22, 598.
- [74] S.M. Xie, N. Fu, L. Li, B.Y. Yuan, J.H. Zhang, Y.X. Li, L.M. Yuan, Anal. Chem. 2018, 90, 9182.
- [75] Z. Li, Z. Mao, W. Zhou, Z. Chen, Anal. Chim. Acta 2020, 1094, 160.
- [76] P.D. Frischmann, G.A. Facey, P.Y. Ghi, A.J. Gallant, D.L. Bryce, F. Lelj, M.J. MacLachlan, J. Am. Chem. Soc., 2010, 132, 3893.
- [77] T. Nabeshima, H. Miyazaki, A. Iwasaki, S. Akine, T. Saiki, C. Ikeda, S. Sato, Chem. Lett., 2006, 35, 1070.
- [78] S. Dhers, H.L.C. Feltham, M. Rouzieres, R. Clerac, S. Brooker, Dalton Trans., 2016, 45, 18089.
- [79] H.L.C. Feltham, C. Dumas, M. Mannini, E. Otero, P. Sainctavit, R. Sessoli, C.J. Meledandri, S. Brooker, Chem. Eur. J., 2017, 23, 2517.
- [80] A. Yamashita, A. Watanabe, S. Akine, T. Nabeshima, M. Nakano, T. Yamamura, T. Kajiwara, Angew. Chem. Int. Ed., 2011, 50, 4016
- [81] H. Nagae, R. Aoki, S. Akutagawa, J. Kleemann, R. Tagawa, T. Schindler, G. Choi, T.P. Spaniol, H. Tsurugi, J. Okuda, K. Mashima, Angew. Chem., Int. Ed., 2018, 57, 2492,
- [82] M. Kwit, В. Żabicka, J. Gawroński, Dalton Trans., 2009, 6783.
- [83] J. Małęcka, U. Lewandowska, R. Kamiński, I. Mames, A. Więckowska, R. Bilewicz, B. Korybut-Daszkiewcz, K. Woźniak Chem. Eur. J. 2011, 17, 12385.
- [84] M.J. Kobylka, J. Janczak, T. Lis, T. Kowalik-Jankowska, J. Kłak, M. Pietruszka, J. Lisowski, Dalton Transactions, 2012, 41, 1503
- [85] M. Paluch, J. Lisowski, T. Lis, Dalton Trans. 2006, 381.
- [86] S.-Y. Lin, C. Wang, L. Zhao, J. Wua, J. Tang, Dalton Trans. 2015, 44, 223,
- [87] M. Paluch, J. Lisowski, J. Alloys. Comp. 2008, 451, 443.
- [88] M. Paluch, K. Ślepokura, T. Lis, J. Lisowski, Inorganic Chemistry Communications, 2011, 14, 92.
- [89] M. J. Kobyłka, K. Ślepokura, M. A. Rodicio, M. Paluch, J. Lisowski, Inorganic Chemistry, 2013, 52, 12893.
- [90] S.-Y. Lin, Y.-N. Guo, Y. Guo, L. Zhao, P. Zhang, H. Ke, J. Tang, Chem. Commun. 2012, 48, 6924.
- [91] S.-Y. Lin, C. Wang, L. Zhao, J. Tang, Chem. Asian. J. 2014, 9, 3558.
- [92] K. Wydra, M. J. Kobyłka, T. Lis, K. Ślepokura, J. Lisowski, Eur. J. Inorg. Chem. 2020, 2096.
- [93] T. Bereta, A. Mondal, K. Ślepokura, Y. Peng, A.K. Powell, J. Lisowski, Inorg. Chem., 2019, 58, 4201.
- [94] T. Paćkowski dane niepublikowane.
- [95] Y. Hu, L. Zhang, F.F. Chang, P.C. Zhao, G.F. Feng, K. Zhang, W. Huang, Inorg. Chem., 2016, 55, 8260.
- [96] T. Paćkowski, J. Gregoliński, K. Ślepokura, J. Lisowski, Tetrahedron Lett., 2018, 59, 3669.
- [97] M.E. Belowich, J.F. Stoddart, Chem. Soc. Rev., 2012, 41, 2003.
- [98] N.M. Rue, J. Sun, R. Warmuth, Isr. J. Chem., 2011, 51, 743.
- [99] R. Frydrych, K. Ślepokura, A. Bil, J. Gregoliński, J. Org. Chem., 2019, 84, 5695.
- [100] J. Gregoliński, K. Ślepokura, T. Paćkowski, J. Lisowski, Org. Lett. 2014, 16, 4372.
- [101] J. Gregoliński, K. Ślepokura, J. Lisowski, Inorg. Chem., 2017, 56, 12719.
- [102] T. Nakamura, Y. Kaneko, E. Nishibori, T. Nabeshima, Nat. Commun. 2017, 18, 129
- [103] J.K.H. Hui, M.J. MacLachlan, Chem. Commun., 2006, 2480.
- [104] A. Gerus, K. Ślepokura, J. Panek, A. Turek, J. Lisowski, J. Org. Chem., 2018, 83, 6748.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77aabc04-f743-406e-8b0e-ca21529a0438