PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A DFT study of the effects of Sc doping on electronic and optical properties of CdS nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work a systematic study was carried out to understand the influence of Sc doping on electronic and optical properties of CdS nanoparticles. The geometry optimization and symmetry computation for CdS and Sc doped CdS nanoparticles using Density Functional Theory (DFT) on B3LYP level with the QZ4P for Cd and DZ2P for sulphur and Sc were performed by Amsterdam Density Functional (ADF). The results show that HOMO-LUMO gap as well as electronic and optical properties of CdS clusters vary with Sc doping. The HOMO-LUMO gap is affected by the dopant and its value decreases to 0.6 eV. Through considering the numerical integration scheme in the ADF package, we investigated different vibrational modes and our calculated Raman and IR spectra are consistent with the reported result. The calculated IR and Raman peaks of CdS and Sc doped CdS clusters were in the range of 100 to 289 cm−1, 60 cm−1 to 350 cm−1 and 99 cm−1 to 282 cm−1, 60 cm−1 to 350 cm−1, respectively, which was also confirmed by experiment as well as a blue shift occurrence. Subsequently, for deeper research of pure and doped CdS clusters, their absorption spectra were calculated using time-dependent DFT method.
Wydawca
Rocznik
Strony
782--791
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Physics Department, Hazara University Mansehra, Pakistan
autor
  • Physics Department, University of Gujrat, Gujrat, Pakistan
autor
  • Physics Department, Hazara University Mansehra, Pakistan
autor
  • Physics Department, Hazara University Mansehra, Pakistan
autor
  • Physics Department, Islamia College Peshawar, Pakistan
autor
  • Sustainable Energy Technologies Center, College of Engineering, King Saud University, PO Box 300, Riyadh 11421, Saudi Arabia
Bibliografia
  • [1] Dong W., Zhu C., Opt. Mater., 22 (2003), 227.
  • [2] Yoffe A.D., Adv. Phys., 42 (1993), 173.
  • [3] Majid A., Ahmad R., Nabi A., Shkoor A., Hassan N., Nanomater. Nanotechno., 2 (2012), 7.
  • [4] Brus L.E., J. Phys. Chem., 90 (1986), 2555.
  • [5] Henglein A., Chem. Rev., 89 (1989), 1861.
  • [6] Weller H., Adv. Mater., 5 (1993), 88.
  • [7] Alivisatos A.P., Science, 271 (1996), 933.
  • [8] Hang P., Bester G., Phys. Rev. B, 85 (2012), 41306.
  • [9] Chamberlain M.P., Giner C.T., Cardona M., Phys. Rev. B, 51 (1995), 1680.
  • [10] Vasilevskiy M.I., Rolo A.G., Gomes M.J.M., Solid State Commun., 104 (1997), 381.
  • [11] Kochman, Singh B., IEEE J. Quantum Elec., 39 (2003), 3.
  • [12] Green M.A., IEEE T. Electron Dev., 46 (1999), 10.
  • [13] Nabi A., Majid A., J. Korean Phys. Soc., 67 (2015), 1.
  • [14] Colvin V.L., Schlamp M.C., Alivisatos A.P., Nature, 370 (1994), 354.
  • [15] Dabbousi B.O., Onitsuka O., Bawendi M.G., Rubner M.F., Appl. Phys. Lett., 66 (1995), 1316.
  • [16] Wang S., Jarrett B.R., Kauzlarich S.M., Louie A.Y., J. Am. Chem. Soc., 129 (2007), 3848.
  • [17] Pradhan N., Battaglia D.M., Liu Y., Peng X., Nano Lett., 7 (2007), 312.
  • [18] Park S.Y., Kim P.J., Lee Y.P., Shin S.W., Kim T.H., Rhee J.K., Adv. Mater., 19 (2007), 3496.
  • [19] Kulkarni J.C., Kazakova O., Holmes J.D., Appl. Phys. A-Mater., 85 (2006), 277.
  • [20] Mermillod-Blondin A., Bonse J., Rosenfeld A., Hertel I.V., Meshcheryakov Y.P., Bulgakova N.M., Audouard E., Stoian R., Appl. Phys. Lett., 93 (2008), 041911.
  • [21] Bogle K.A., Ghosh S., Dhole S.D., Bhoraskar V.N., Fu L.-F., Chi M.-F., Browning N.D., Kundaliya D., Das G.P., Ogale S.B., Chem. Mater., 20 (2008), 440.
  • [22] Kashiwaba Y., Komatsu T., Nishikawa M., Ishikawa Y., Segawa K., Hayasi Y., Thin Solid Films, 408 (2002), 43.
  • [23] Kashiwaba Y., Isojima K., Ohta, Sol. Energ. Mat. Sol. C, 75 (2003), 253.
  • [24] Abe T., Ohashi S.J., Watanabe S., Kashiwaba M., Phys. Status Solidi., 229 (2002), 1015.
  • [25] Petre D., Pintilie I., Pentia E., Pintilie I., Botila T., Mater. Sci. Eng. B-Adv., 58 (1993), 238.
  • [26] Kashiwaba Y., Abe H., Kirita H., Ikeda T., Jpn. J. Appl. Phys., 29 (1990), 1733.
  • [27] Mohammad S., Otaqsara T., Yousaf M.H., J. Turk. Phys., 35 (2011), 341.
  • [28] Jindal Z., Verma N.K., Al E., Annu R.M., Annu. Rev. Mater. Sci., 30 (2003), 475.
  • [29] Hohenberg W., Kohn, Phys. Rev. B, 136 (1964), 864.
  • [30] Schwarz K., J. Solid State Chem., 176 (2003), 319.
  • [31] Hehre W.J., Radom L., Schleyer von P.R., Pople J., Ab initio molecular orbital theory, JohnWiley & Sons, New York – Chichester – Brsibane – Toronto – Singapore, 1986.
  • [32] Xu S., Wang C., Cui Y., Int. J. Quantum Chem., 111 (2011), 156.
  • [33] Kamruzzaman M., Luna T.R., Podder J., Anowar M.G.M., Semicond. Sci. Tech., 27 (2012), 035017.
  • [34] Tell B., Damen T.C., Porto S.P.S., J. Phys. Rev., 144 (1966), 771.
  • [35] Gisbergen V., Rosa S.J.A., Ricciardi A., Baerends G., J. Chem. Phys., 111 (1999), 2499.
  • [36] Edwards L., Dolphin D.H., Gouterman M., Alder, J. Mol. Spectrosc., 16 (1971), 38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77a26be5-93a5-4d84-9097-5a12c3a63afd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.