PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Displacements of shell in soil-steel bridge subjected to moving load: determination using strain gauge measurements and numerical simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyses displacements of a shell in a soil-steel bridge subjected to quasi-static moving loads. The considerations relate to a large span structure located in Ostróda, Poland. In particular, shell displacements during a loading cycle consisting of consecutive passages of a pair of trucks over the bridge are investigated. The results of a full-scale test, that is, the readings from a system of strain gauges arranged along the shell circumferential section, are the basis for determination of shell displacements. The proposed algorithm makes it possible to calculate any component of the displacement using just a simple model of the shell in the form of a linear elastic curvilinear beam. The approach uses real measurements, and thus, it yields results of displacements reflecting the actual mechanical behaviour of the entire composite structure including not only the shell, but also the backfill, the pavement, etc. The calculated state of displacement sets the basis for calibration of the numerical model. Finite element (FE) analyses include staged construction, that is, backfilling the shell by placing successive soil layers, as well as the loading test with the vehicles moving over the bridge. It is demonstrated that the ballasting of the shell during backfilling contributes to the improvement of the simulated behaviour of the object at the stage of operation, that is, when subjected to moving truck load. Thus, the calibration of the FE model is successfully carried out using the results of strain gauge measurements.
Słowa kluczowe
Wydawca
Rocznik
Strony
26--37
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wrocław, Poland
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] Abdel-Sayed G, Salib SR. Minimum depth of soil cover above soil–steel bridges. Journal of Geotechnical and Geoenvironmental Engineering. 2002;128(8):672–681.
  • [2] Barkhordari MA, Abdel-Sayed G. The parameters controlling the strength of soil-steel structures. International Journal of Engineering Science (Tehran). 2001;12(3):77–86.
  • [3] Bayoglu Flener E. Testing the response of box-type soil-steel structures under static service loads. Journal of Bridge Engineering. 2010;15(1):90–97.
  • [4] Bayoglu Flener E, Karoumi R. Dynamic testing of a soil–steel composite railway bridge. Engineering structures. 2009;31(12):2803–2811
  • [5] Brachman RWI, Moore ID, Mak AC. Ultimate limit state of deep-corrugated large-span box culvert. Transportation Research Record. 2010;2201(1):55–61.
  • [6] Bęben D. Experimental Study on the Dynamic Impacts of Service Train Loads on Corrugated Steel Plate Culvert. J Bridge Eng. 2013;18(4):339–346.
  • [7] Elshimi TM, Brachman RW, Moore ID. Effect of truck position and multiple truck loading on response of long-span metal culverts. Canadian Geotechnical Journal. 2014;51(2):196–207.
  • [8] Esmaeili M, Zakeri JA, Abdulrazagh PH. Minimum depth of soil cover above long-span soil-steel railway bridges. International Journal of Advanced Structural Engineering. 2013;5(1):7.
  • [9] Kunecki B. Field Test and Three-Dimensional Numerical Analysis of Soil–Steel Tunnel during Backfilling. Transportation Research Record. 2014;2462(1):55–60.
  • [10] Łydżba D, Różański A, Sobótka M, Stefaniuk D, Chudy G, Wróblewski T. Mechanical behaviour of soil-steel structure subjected to live loads and different water conditions. Arch Inst Civ Eng. 2017;23:163–174
  • [11] Machelski C. Dependence of deformation of soil-shell structure on the direction of load passage. Roads and Bridges 2014;13:223–233.
  • [12] Machelski C, Antoniszyn G. Load rate of the circumferential sector of soil-steel bridge structures. Archives of Civil and Mechanical engineering. 2005;5(4):85–102.
  • [13] Machelski C, Janusz L. Application of Results of Test in Developing 2D Model for Soil-Steel Railway Bridges. Conference Transportation Research Board of Nationals Academies, Washington D.C. 2017:70–75.
  • [14] Maleska T, Bęben D. Behaviour of the soil-steel bridge with different soil cover height under seismic excitations. Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations. CRC Press; 2021;1801–1808.
  • [15] Maleska T, Bęben D. Numerical analysis of a soil-steel bridge during backfilling using various shell models. Engineering Structures. 2019;196:109358.
  • [16] Maleska T, Bęben D, Nowacka J. Seismic vulnerability of a soil-steel composite tunnel–Norway Tolpinrud Railway Tunnel Case Study. Tunnelling and Underground Space Technology. 2021;110: 103808.
  • [17] Mańko Z, Bęben, D. Research on steel shell of a road bridge made of corrugated plates during backfilling. Journal of Bridge Engineering. 2005;10(5):592–603.
  • [18] Mellat P, Anderson A, Pettersson L, Karuomi R. Dynamic analysis of a short span soil-steel composite bridge for railways traffic using field measurements and numerical modelling. Eng Struct. 2014;69:49–61.
  • [19] Pettersson L, Flener EB, Sundquist H. Design of soil–steel composite bridges. Structural Engineering International. 2015;25(2):159–172.
  • [20] Pittino G, Golser J. Structural plate steel underpasses during backfilling-how to minimize the bending moment. FLAC and Numerical Modeling in Geomechanics. 2006:001–007.
  • [21] Sobótka M. Numerical simulation of hysteretic live load effect in soil-steel bridge. Stud Geotech Mech. 2014;36(1):103–109.
  • [22] Sobótka M. Shape optimization of flexible soil-steel culverts taking non-stationary loads into account. Structures. 2020;23:612–620.
  • [23] Sobótka M, Łydżba D. Live load effect in soil-steel flexible culvert: role of apparent cohesion of backfill. Eur J Environ Civ Eng. 2019:1–15.
  • [24] Sobótka M, Machelski C. Hysteretic live load effect in soil-steel structure. Eng Trans. 2016;64(4):493–499.
  • [25] Taleb B, Moore ID. Metal culvert response to earth loading: performance of two-dimensional analysis. Transportation Research Record. 1999;1656(1):25–36.
  • [26] Tomala P, Machelski C. Construction of the soil-steel structure with use of UltraCor corrugation (in Polish). Archives of Institute Of Civil Engineering. 2017;24:359–368
  • [27] Wadi A. Soil-Steel Composite Bridges: Research advances and application. Doctoral dissertation: Kungliga tekniska högskolan; 2019.
  • [28] Wadi A, Pettersson L, Karoumi R. Flexible culverts in sloping terrain: Numerical simulation of soil loading effects. Eng Struct. 2015;101:111–124.
  • [29] Wadi A, Pettersson L, Raid K. FEM simulation of a full-scale loading-to-failure test of a corrugated steel culvert. Steel Compos Struct. 2018;27(2):17–227.
  • [30] Wysokowski A, Janusz L. General conlusions based on the testing of various types of corrugated flexible structures in laboratory in natural scale. Archives of Civil Engineering Institute. 2007:273–286.
  • [31] Zimmermann T, Truty A, Urbański A, Podleś K. ZSoil user manual. Zace Services; 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-779ec039-2463-431d-96e7-38a18f5c5cb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.