PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predictive modelling of a rapid stratified bed filter for turbidity removal from surface water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the present work was to evaluate the hydrodynamic behaviour of a stratified bed filtration column consisting of 4 cm of sand and 2 cm of limestone to remove turbidity and measuring the head loss through the filter in several runs. In this study, two types of sand were used as filtering bed material, one fine and one medium. Crushed limestone was also available. These materials were characterized to determine the average particle diameter, porosity, and permeability coefficient. These were respectively 1.7∙10-4 m, 336.96 and 0.68 m∙day-1 for fine sand, 3.3∙10-1 m, 654.24 and 2.59 m∙day-1 for the medium sand and 1.26∙10-3 m, 388.8 and 8.64 m∙day-1 for crushed limestone. Using these materials, hydrodynamic analyses were carried out using clean water under rapid filtration conditions. In these analyses, different filtration rates were determined to be used in each experiment. Once the filtration rates were determined, the filtration analysis was performed with synthetic turbid water prepared at 8 NTU using tap water and bentonite. From the results obtained, a predictive model was developed based on total head losses for the evaluated filter, maintaining the rapid filtration condition. As a result, a turbidity removal efficiency of 97.7% was obtained with a total head loss of 17.8 cm at a filtration rate of 153 m·day-1 . The developed model predicted head loss as a function of operating time, filtration rate, and filter depth to maximise turbidity removal. The model showed excellent prediction accuracy with R2 of 0.9999, which indicates that the model predictions are not biased. It was concluded that, due to the porosity of these materials, a stratified bed of sedimentary rocks has a great potential to be used in surface water filtration processes, which implies that it could be used at the rural community level as a form of water treatment, since the material is a readily available, maintenance is simple and low cost, and installation and operation are effortless.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
192--202
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Universidad de Cartagena, Faculty of Engineering, Chemical Engineering Department, Avenida del Consulado St. #30 No. 48 152, 130015, Cartagena, Colombia
  • Universidad de Cartagena, Faculty of Engineering, Chemical Engineering Department, Avenida del Consulado St. #30 No. 48 152, 130015, Cartagena, Colombia
  • Universidad de Cartagena, Faculty of Engineering, Chemical Engineering Department, Avenida del Consulado St. #30 No. 48 152, 130015, Cartagena, Colombia
Bibliografia
  • ASTM D2487-17 Standard practice for classification of soils for engineering purposes (Unified soil classification system). DOI 10.1520/D2487-17.
  • BOEK E.S., HALL C., TARDY P.M.J. 2012. Deep bed filtration modelling of formation damage due to particulate invasion from drilling fluids. Transport in Porous Media. Vol. 91(2) p. 479–508. DOI 10.1007/s11242-011-9856-0.
  • BOMBARDELLI W.W.Á., DE CAMARGO A.P., FRIZZONE J.A., LAVANHOLI R., DA ROCHA H.S. 2019. Local head loss caused in connections used in micro-irrigation systems. Revista Brasileira de Engenharia Agrícola e Ambiental – Agriambi. Vol. 23(7) p. 492–498. DOI 10.1590/1807-1929/agriambi.v23n7p492-498.
  • ELFAKI H., HAWARI A., MULLIGAN C. 2015. Enhancement of multi-media filter performance using talc as a new filter aid material: Mechanistic study. Journal of Industrial and Engineering Chemistry. Vol. 24 p. 71–78. DOI 10.1016/j.jiec.2014.09.010.
  • EREGNO F.E., HEISTAD A. 2019. On-site treated wastewater disposal systems – The role of stratified filter medias for reducing the risk of pollution. Environment International. Vol. 124 p. 302–311. DOI 10.1016/j.envint.2019.01.008.
  • GAO Y., LIN Q., BIJELJIC B., BLUNT M.J. 2020. Pore-scale dynamics and the multiphase Darcy law. Physical Review Fluids. Vol. 5(1), 13801. DOI 10.1103/PhysRevFluids.5.013801.
  • HU W., LIANG J., JU F., WANG Q., LIU R., BAI Y., LIU H., QU J. 2020. Metagenomics unravels differential microbiome composition and metabolic potential in rapid sand filters purifying surface water versus groundwater. Environmental Science & Technology. Vol. 54(8) p. 5197–5206. DOI 10.1021/acs.est.9b07143.
  • IANNELLI R., BIANCHI V., SALVATO M., BORIN M. 2011. Modelling assessment of carbon supply by different macrophytes for nitrogen removal in pilot vegetated mesocosms. International Journal of Environmental Analytical Chemistry. Vol. 91(7–8) p. 708–726. DOI 10.1080/03067319.2011.557159.
  • JIANG Y., MARTINEZ-GUERRA E., GNANESWAR GUDE V., MAGBANUA B., TRUAX D.D., MARTIN J.L. 2016. Wetlands for Wastewater Treatment. Water Environment Research. Vol. 88(10) p. 1160–1191. DOI 10.2175/106143016X14696400494650.
  • KENDOUCI M.A., KHARROUBI B., KHELFAOUI R., BENDIDA A., DENNAI B., MAAZOUZI A. 2013. Simulation of water filtration in porous zone based on Darcy’s law. Energy Procedia. Vol. 36 p. 163–168. DOI 10.1016/j.egypro.2013.07.019.
  • LI H., SANSALONE J. 2020. Multi-scale physical model simulation of particle filtration using computational fluid dynamics. Journal of Environmental Management. Vol. 271, 111021. DOI 10.1016/j. jenvman.2020.111021.
  • LI J., HAN X., BRANDT B.W., ZHOU Q., CIRIC L., CAMPOS L.C. 2019. Physico-chemical and biological aspects of a serially connected lab-scale constructed wetland-stabilization tank-GAC slow sand filtration system during removal of selected PPCPs. Chemical Engineering Journal. Vol. 369 p. 1109–1118. DOI 10.1016/j.cej.2019.03.105.
  • MAHANNA H., FOUAD M., RADWAN K., ELGAMAL H. 2015. Predicting of effluent turbidity from deep bed sand filters used in water treatment. International Journal of Scientific and Engineering Research. Vol. 6(9) p. 621–626. DOI 10.14299/ijser.2015.09.006.
  • Minvivienda 2013. Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico – RAS. Título C: Sistemas de potabilización [Technical Regulation of the Potable Water and Basic Sanitation Sector – RAS. Title C: Drinking water systems] [online]. Bogota. Ministerio de Vivienda pp. 336. [Access 10.05.2021]. Available at: https://www.minvivienda.gov.co/sites/default/files/documentos/titulo-c-dic-4-2013.pdf
  • MUNCAN J., MATOVIC V., NIKOLIC S., ASKOVIC J., TSENKOVA R. 2020. Aquaphotomics approach for monitoring different steps of purification process in water treatment systems. Talanta. Vol. 206. DOI 10.1016/j.talanta.2019.120253.
  • NCUBE P., PIDOU M., STEPHENSON T., JEFFERSON B., JARVIS P. 2016. The effect of high hydraulic loading rate on the removal efficiency of a quadruple media filter for tertiary wastewater treatment. Water Research. Vol. 107 p. 102–112. DOI 10.1016/j.watres.2016.10.060.
  • OVALLE-VILLAMIL W., SASANAKUL I. 2019. Investigation of non-Darcy flow for fine grained materials. Inthuorn Sasanaul. Geotechnical and Geological Engineering. Vol. 37 p. 413–429. DOI 10.1007/s10706-018-0620-x.
  • PAGE D.W., VANDERZALM J.L., BARRY K.E., TORKZABAN S., GONZALEZ D., DILLON P.J. 2015. E. coli and turbidity attenuation during urban stormwater recycling via aquifer storage and recovery in a brackish limestone aquifer. Ecological Engineering. Vol. 84 p. 427–434. DOI 10.1016/j.ecoleng.2015.09.023.
  • SCHÖNTAG J.M., PIZZOLATTI B.S., JANGADA V.H., DE SOUZA F.H., SENS M.L. 2015. Water quality produced by polystyrene granules as a media filter on rapid filters. Journal of Water Process Engineering. Vol. 5 p. 118–126. DOI 10.1016/j.jwpe.2015.02.001.
  • SHARMA D., TAYLOR-EDMONDS L., ANDREWS R.C. 2018. Comparative assessment of ceramic media for drinking water biofiltration. Water Research. Vol. 128 p. 1–9. DOI 10.1016/j.watres .2017.10.019.
  • SIDDIQUI F., SOLIMAN M.Y., HOUSE W., IBRAGIMOV A. 2016. Pre-Darcy flow revisited under experimental investigation. Journal of Analytical Science and Technology. Vol. 7(1). DOI 10.1186/s40543-015-0081-2.
  • SINGH C., DASAROJU G., SINGH M., GANGACHARYULU D. 2016. Modelling for flow through unsaturated porous media with constant and variable density conditions using local thermal equilibrium. International Journal of Computer Applications. IJCA Proceedings on International Conference on Advances in Emerging Technology. Vol. 5 p. 24–30.
  • USHAKOVA I., KORCHEVSKAYA Y., TROTSENKO I.A., KONDRATEVA T. 2020. Methodology for determining the filtration parameters of drainage bedding during engineering surveying. In: International Scientific Conference the Fifth Technological Order: Prospects for the Development and Modernization of the Russian AgroIndustrial Sector (TFTS 2019). Eds. O. Shumakova, V. Shamanin, N. avrilova, V. Stukach. Vol. 393 p. 42–45. DOI 10.2991/assehr.k.200113.135.
  • VASHISHT A.K., RANJAN P. 2020. Intermittent multi-column sand filter: A unique solution to multiple applications. Journal of The Institution of Engineers (India). Ser. A. Vol. 101(1) p. 69–75. DOI 10.1007/s40030-019-00408-5.
  • VRIES D., BERTELKAMP C., SCHOONENBERG KEGEL F., HOFS B., DUSSELDORP J., BRUINS J.H., DE VET W., VAN DEN AKKER B. 2017. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration. Water Research. Vol. 109 p. 35–45. DOI 10.1016/j.watres.2016.11.032.
  • WANG P.F., GENG N., QIAN J., HOU J., QI N. 2016. Evaluating the impact of long term hydrodynamic conditions on the release of metals from contaminated sediments in Taihu Lake, China. Journal of Environmental Informatics. Vol. 27(1) p. 67–71. DOI 10.3808/jei.201500318.
  • ZHANG Z., YIN T., HUANG X., DIAS D. 2019. Slurry filtration process and filter cake formation during shield tunnelling: Insight from coupled CFD-DEM simulations of slurry filtration column test. Tunnelling and Underground Space Technology. Vol. 87 p. 64–77. DOI 10.1016/j.tust.2019.02.001.
  • ŻYWCZYK L., MOSKAL A., GRADOŃ L. 2015. Numerical simulation of deep-bed water filtration. Separation and Purification Technology. Vol. 156 p. 51–60. DOI 10.1016/j.seppur.2015.10.003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-779a46bc-fd88-4601-a6fc-ae2025f82f15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.