PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The significance of the nanostructural components on the properties of the nanoengineering materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the paper, the own original achievements and a mature view of the current development of advanced nanotechnology materials are presented. Design/methodology/approach: The paper should be treated as an auto-review of the own research in the area. The paper is preceded by a short historical sketch and the development of the concept and meaning of nanotechnology and nanostructured materials. Respectively, the following issues are described: the nanocomposites containing carbon or halloysite nanotubes, graphene and metallic nanowires, nanostructured coatings and surface zones of engineering materials, a creation of the nanometric components of the structure of massive materials, nanocomposite materials designed mainly for use in regenerative medicine and regenerative dentistry. Practical implications: In final remarks, the attention is paid to applications of nanotechnology in many products sought on the market and improve their properties and applicability.
Rocznik
Strony
55--85
Opis fizyczny
Bibliogr. 362 poz., rys.
Twórcy
  • Medical and Dental Engineering Centre for Research, Design and Production ASKLEPIOS Ltd, Science Centre, ul. Królowej Bony 13 D, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials surface engineering; Compendium of knowledge and academic textbook, Open Access Library, Annal VIII (1) 2018, 1-1138 (in Polish).
  • [2] L.A Dobrzański, Metals and Alloys, Open Access Library, Annat VII (2) 2017, 1-982 (in Polish).
  • [3] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials m biomedical, tissue and mechanical engineering. Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [4] A.D. Dobrzańska-Danikiewicz, D. Cichocki, M. Pawlyta, D. Łukowiec, W. Wolany, Synthesis conditions of carbon nanotubes with the chemical vapour deposition method, Physica Status Solidi B 251 (2014) 2420-2425.
  • [5] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Carbon nanotubes decorating methods, Archives of Materials Science and Engineering 61/2 (2013) 53-61.
  • [6] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, M. Pawlyta, T. Gaweł, M. Procek, Resistance changes of carbon nanotubes decorated with platinum nanoparticles in the presence of hydrogen at different and constant concentrations, Physica Status Solidi B 251/12 (2014) 2426-2431.
  • [7] A.D. Dobrzańska-Danikiewicz, W. Wolany, G. Benke, Z. Rdzawski, The new MWCNTs-rhenium nanocomposite, Physica Status Solidi B 251/12 (2014) 2485-2490.
  • [8] A.D. Dobrzańska-Danikiewicz, D. Cichocki, Encapsulation into carbon nanotubes, in: W.I. Milne, M. Cole, S. Mitura (Eds.), Carbon Nanotechnology, One Central Press, Manchester, United Kingdom, 2015.
  • [9] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Carbon nanotubes manufacturing using the CVD equipment against the background of other methods, Archives of Materials Science and Engineering 64/2 (2013) 103-109.
  • [10] A.D. Dobrzańska-Danikiewicz, D. Cichocki, D. Łukowiec, W. Wolany, Synthesis of multi-walled carbon nanbtubes by the Catalytic-Chemical Vapour Deposition method, Materials Engineering 35/6 (2014) 477-480 (in Polish).
  • [11] A.D. Dobrzańska-Danikiewicz, D. Cichocki, D. Łukowiec, W. Wolany, Carbon nanotubes synthesis time versus their layer height, Archives of Materials Science and Engineering 69/1 (2014) 5-11.
  • [12] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, W. Wolany, Comparative analysis of the structure of nanocomposites consisting of MWCNTs and Pt, Re or Rh nanoparticles, in: W.I. Milne, M. Cole, S. Mitura (Eds.), Carbon Nanotechnology, One Central Press, Manchester, United Kingdom, 2015.
  • [13] A.D. Dobrzańska-Danikiewicz, D. Łukowiec, D. Cichocki, W. Wolany, Nanocomposites composed of carbon nanotubes coated with nanocrystals of noble metals, Open Access Library V/2 (2015) 1-131 (in Polish).
  • [14] L.A. Dobrzański, A. Wierzbicka, A. Drygała, K. Lukaszkowicz, Influence of carbon nanotubes on properties of dye-sensitised solar cells, Archives of Materials Science and Engineering 74/1 (2015) 32-44.
  • [15] L.A. Dobrzański, M. Pawlyta, A. Krztoń, B. Liszka, C.W. Tai, W. Kwaśny, Synthesis and characterization of carbon nanotubes decorated with gold nanoparticles, Acta Physica Polonica A 118/3 (2010) 483-486.
  • [16] L.A. Dobrzański, M. Pawlyta, A. Krztoń, B. Liszka, K. Labisz, Synthesis and characterization of carbon nanotubes decorated with platinum nanoparticles, Journal of Achievements in Materials and Manufacturing Engineering 39/2 (2010) 184-189.
  • [17] L.A. Dobrzański, M. Szindler, A. Dudek, K. Krawiec, The influence of natural and synthetic dyes on the absorbance of nanocrystalline TiO2 used in dye-sensitized solar cells, Programme and Proceedings of the Twenty-Second Winter International Scientific Conference on Achievements in Mechanical and Materials Engineering, Winter-AMME'2015, Gliwice-Zakopane, 2015, 58.
  • [18] L.A. Dobrzański, M. Prokopiuk vel Prokopowicz, K. Lukaszkowicz, A. Drygała, M. Szindler, Graphene oxide film as semi-transparent counter electrode for a dye-sensitized solar cell, Programme and Proceedings of the Twenty-Second Winter International Scientific Conference on Achievements in Mecha nical and Materials Engineering, WinterAMME '2015, Gliwice-Zakopane, 2015, 57.
  • [19] L.A. Dobrzański, A. Mucha, M. Prokopiuk vel Prokopowicz, A. Drygała, K. Lukaszkowicz, Technology of dye-sensitized solar cells with carbon nanotubes, Archives of Materials Science and Engineering 70/2 (2014) 70-76.
  • [20] L.A. Dobrzański, M. Szindler, M. Prokopiuk vel Prokopowicz, A. Drygała, K. Lukaszkowicz, T. Jung, M.M. Szindler, Transparent platinum counter electrode for dye-sensitized solar cells, Journal of Achievements in Materials and Manufacturing Engineering 68/1 (2015) 5-10.
  • [21] L.A. Dobrzański, M. Macek, B. Tomiczek, Effect of carbon nanotubes content on morphology and properties of AlMg1SiCu matrix composite powders, Archives of Materials Science and Engineering 69/1 (2014) 12-18.
  • [22] L.A. Dobrzański, A. Mucha, M. Macek, The influence of carbon nanotubes on the mechanical properties of nanocomposites, Archives of Materials Science and Engineering 68/2 (2014) 75-80.
  • [23] L.A. Dobrzański, M. Macek, B. Tomiczek, W. Pakieła, M. Kremzer, Influence of the milling time and MWCNT content on the wear properties of the AlMg1SiCu/MWCNT nanocomposites, Archives of Materials Science and Engineering 74/2 (2015) 77-84.
  • [24] L.A. Dobrzański, B. Tomiczek, M. Adamiak, K. Gołombek, Mechanically Milled Aluminium Matrix Composites Reinforced with Halloysite Nanotubes, Proceedings of the 14th International Materials Symposium, IMSP'2012, Denizli, Turkey, 2012, 781-788.
  • [25] L.A. Dobrzański, B. Tomiczek, M. Adamiak, K. Gołombek, Mechanically milled aluminium matrix composites reinforced with halloysite nanotubes, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 654-660.
  • [26] L.A. Dobrzański. B. Tomiczek, M. Adamiak, Manufacturing of EN A W6061 matrix composites reinforced by halloysite nanotubes, Journal of Achievements in Materials and Manufacturing Engineering 49/1 (2011) 82-89.
  • [27] B. Tomiczek, L.A. Dobrzański, Composite materials based on AlMg1SiCu aluminium alloy reinforced with halloysite particles, Journal of Achievements in Materials and Manufacturing Engineering 61/1 (2013) 39-46.
  • [28] L.A. Dobrzański, B. Tomiczek, M. Pawlyta, P. Nuckowski, TEM and XRD study of nanostructured composite materials reinforced with the halloysite particles, Materials Science Forum 783-786 (2014) 1591-1596.
  • [29] L.A. Dobrzański, B. Tomiczek, G. Matula, K. Gołombek, Role of halloysite nanoparticles and milling time on the synthesis of AA 6061 aluminium matrix composites, Advanced Materials Research 939 (2014) 84-89.
  • [30] L.A. Dobrzański, B. Tomiczek, W. Pakieła, A.E. Tomiczek, Mechanical Properties and Wear Resistance of PM Composite Materials Reinforced with the Halloysite Particles, Advanced Materials Research 1127 (2015) 107-112.
  • [31] L.A. Dobrzański, B. Tomiczek, M. Pawlyta, M. Król, Aluminium AlMg1SiCu matrix composite materials reinforced with halloysite particles, Archives of Metallurgy and Materials 59/1 (2014) 335-338.
  • [32] B. Tomiczek, M. Pawlyta, M. Adamiak, L.A. Dobrzański, Effect of milling time on microstructure of AA6061 composites fabricated via mechanical alloying, Archives of Metallurgy and Materials 60/2 (2015) 789-793.
  • [33] L.A. Dobrzański, B. Tomiczek, M. Pawlyta, K. Gołombek, EN AW-AlMg1SiCu alloy matrix composite materials reinforced with halloysite particles manufactured by mechanical milling, Materials Engineering 35/2 (2014) 102-105.
  • [34] L.A Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 1-392.
  • [35] B. Tomiczek, M. Kujawa, G. Matula, M. Kremzer, T. Tański, L.A. Dobrzański, Aluminium AlSi12 alloy matrix composites reinforced by mullite porous preforms, Materialwissenschaft und Werkstofftechnik 46/4-5 (2015) 368-376.
  • [36] L.A. Dobrzański, G. Matula. A.D. Dobrzańska-Danikiewicz, P. Malara, M. Kremzer, B. Tomiczek, M. Kujawa, E. Hajduczek, A. Achtelik-Franczak, L.B. Dobrzański, J. Krzysteczko, Composite Materials Infiltrated by Aluminium Alloys Based on Porous Skeletons from Alumina, Mullite and Titanium Produced by Powder Metallurgy Techniques, in: L.A. Dobrzański (Ed.), Powder Metallurgy- Fundamentals and Case Studies, InTech, Rijeka, Croatia. 2017. 95-137, DOI: 10.5772/65377.
  • [37] M. Król, M. Bilewicz, J.C. Viana, L.A Dobrzański, The Thermomechanical Processing Conditions and the Mechanical Properties of Injection Molded PP/PC Blends, Materials Science Forum 587-588 (2008) 553-557.
  • [38] L.A Dobrzański, M. Górniak, L. Reimann, M. Staszuk, Characterization of aluminosilicate nanoparticles as a reinforcement in composite materials based on polymeric matrix, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 239-244.
  • [39] L.A Dobrzański, M. Bilewicz, J.C. Viana, Polymer nanocomposites reinforced with montmorillonite, Archives of Materials Science and Engineering 53/1 (2012) 5-28.
  • [40] L.A. Dobrzański, M. Bilewicz, J.C. Viana, Mechanical approach of PP/MMT polimer nanocomposite, Archives of Materials Science and Engineering 43/2 (2010) 94-100.
  • [41] M. Bilewicz, J.C. Viana, L.A Dobrzański, Polymer composite strengthening by developed injection moulding technique, Archives of Materials Science and Engineering 30/2 (2008) 69-72.
  • [42] L.A. Dobrzański, M. Bilewicz, Influence of phyllosilicates 2:1 on structure of polymer nanocomposite, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 644-653.
  • [43] M. Bilewicz, L.A Dobrzański, J.C. Viana, Morphological aspect of multilaminar PP composite, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 598-606.
  • [44] L.A. Dobrzański, M. Bilewicz, J.C. Viana, A. Cunha, Non-conventionally obtained polymer nanocomposites with different nanoclay ratios, Journal of Achievements m Materials and Manufacturing Engineering 31/2 (2008) 212-217.
  • [45] M. Bilewicz, J.C. Viana, L.A. Dobrzański, Development of microstructure affected by in-mould manipulation in polymer composites and nanocomposites, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 71-76.
  • [46] L.A Dobrzański, M. Król, M. Bilewicz, J.C. Viana, Microstructure and mechanical properties of Polypropylene/Polycarbonate blends, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 19-22.
  • [47] M. Bilewicz, J.C. Viana, L.A. Dobrzański, Self reinforced polymer-polymer composites, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 43-46.
  • [48] M. Bilewicz, J.C. Viana, A.M. Cunha, L.A. Dobrzański, Morphology diversity and mechanical response of injection moulded polymer nanocornposites and polymer-polymer composites, Journal of Achievements in Materials and Manufacturing Engineering 15/1-2 (2006) 159-165.
  • [49] M. Górniak (Advisor L.A. Dobrzański), The influence of organophilization of surface of halloysite nanotubes and montmorillonite nanoplates on properties of polymer, PhD thesis, Silesian University of Technology, Gliwice, 2014 (in Polish).
  • [50] L.A. Dobrzański, I. Czaja, Effect of nanowires and nanoparticles of copper on the structure and properties of the nanocomposite polymeric materials, Archives of Materials Science and Engineering 75/1 (2015) 18-29.
  • [51] B. Nieradka-Buczek (Advisor L.A. Dobrzański), Application of silver nanowires as a reinforcement of transparent nanocomposite layers, PhD thesis in progress, Silesian University of Technology, Gliwice 2018 (in Polish).
  • [52] L.A. Dobrzański, D. Pakuła, M. Staszuk, A.D. Dobrzańska-Danikiewicz, Structure and properties of composite coatings on sintered carbide and nitride and sialon ceramics, Open Access Library V/1 (2015) 1-173 (in Polish).
  • [53] L.A. Dobrzański, D. Pakuła, M. Staszuk, Chemical Vapor Deposition in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2755-2803.
  • [54] L.A. Dobrzański, M. Adamiak, TiN and Ti(C,N) coatings on high-speed steels with Ti addition: their structure and properties, in: G. Petzow (Ed.), Fortschritte in der Metallographie, Berichte der 10. Internationalen Metallographie-Tagung, Loeben, Austria, Sonderbande der Praktischen Metallographie 30, DGM lnformationsgesellschaft mbH, Frankfurt, Germany, 1999, 569-574.
  • [55] L.A. Dobrzański, Design and manufacturing of functional graded tool materials - dependence of properties on technology and thickness of surface layers with gradient of chemical and phase composition manufactured on tools for various applications, in: Design and manufacturing of functional graded materials, Institute of Metallurgy and Materials Science, Polish Academy of Sciences (PAN), Kraków, 2007, 130-150 (in Polish).
  • [56] K. Gołombek, Structure and properties of injection moulding tool materials with nanocrystalline coatings, Open Access Library 1/19 (2013) 1-136 (in Polish).
  • [57] K. Lukaszkowicz, Forming the structure and properties of hybrid coatings on reversible rotating extrusion dies, Open Access Library 10/16 (2012) 1-140 (in Polish).
  • [58] M. Staszuk, L.A. Dobrzański, T. Tański, W. Kwaśny, M. Musztyfaga-Staszuk, The effect of PVD and CVD coating structures on the durability of sintered cutting edges, Archives of Metallurgy and Materials 59/1 (2014) 269-274.
  • [59] K. Lukaszkowicz, L.A. Dobrzański, G. Kokot, P. Ostachowski, Characterization and properties of PVD coatings applied to extrusion dies, Vacuum 86/12 (2012) 2082-2088.
  • [60] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010)187-193.
  • [61] L.A. Dobrzański, M. Polok-Rubiniec, M. Adamiak, PVD coatings deposited onto plasma nitrided X37CrMoV5-1 type steel, International Journal of Materials and Product Technology 33/3 (2008) 226-239.
  • [62] M. Adamiak, L.A. Dobrzański, Microstructure and selected properties of hot-work tool steel with PVD coatings after laser surface treatment, Applied Surface Science 254/15 (2008) 4552-4556.
  • [63] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201/1-3 (2008) 310-314.
  • [64] K. Lukaszkowicz, L.A. Dobrzański, Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5-1 steel substrate, Journal of Materials Science 43/10 (2008) 3400-3407.
  • [65] L.A. Dobrzański, D. Pakuła, A. Křiž, M. Soković, J. Kopač, Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics, Journal of Materials Processing Technology 175/1-3 (2006) 179-185.
  • [66] L.A. Dobrzański, K. Gołombek, E. Hajduczek, Structure of the nanocrystalline coatings obtained on the CAE process on the sintered tool materials, Journal of Materials Processing Technology 175/1-3 (2006) 157-162.
  • [67] L.A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated Al2O3+ZrO2 oxide tool ceramics, Journal of Materials Processing Technology 167/2-3 (2005) 438-446.
  • [68] W. Kwaśny, L.A. Dobrzański, Structure, physical properties and fractal character of surface topography of the Ti+TiC coatings on sintered high-speed steel, Journal of Materials Processing Technology 164-165 (2005) 1519-1523.
  • [69] L.A. Dobrzański, A. Śliwa, W. Kwaśny, Employment of the finite element method for determining stresses in coatings obtained on high-speed steel with the PVD process, Journal of Materials Processing Technology 164-165 (2005) 1192-1196.
  • [70] M. Soković, J. Mikuła, L.A. Dobrzański, J. Kopač, L. Kosec, P. Panjan, J. Madejski, A. Piech, Cutting properties of the Al2O3 + SiC(w) based tool ceramic reinforced with the PVD and CVD wear resistant coatings, Journal of Materials Processing Technology 164-165 (2005) 924-929.
  • [71] L.A. Dobrzański, M. Polok, M. Adamiak, Structure and properties of wear resistance PVD coatings deposited onto X37CrMoV5-1 type hot work steel, Journal of Materials Processing Technology 164-165 (2005) 843-849.
  • [72] L.A. Dobrzański, D. Pakuła, Comparison of the structure and properties of the PVD and CVD coatings deposited on nitride tool ceramics, Journal of Materials Processing Technology 164-165 (2005) 832-842.
  • [73] L.A. Dobrzański, J. Mikuła, Structure and properties of PVD and CVD coated Al2O3+TiC mixed oxide tool ceramics for dry on high-speed cutting processes, Journal of Materials Processing Technology 164-165 (2005) 822-831.
  • [74] L.A. Dobrzański, K. Gołombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN + mono-, gradientor multi(Ti,Al,Si)N + TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [75] M. Soković, L. Kosec, L.A. Dobrzański, Diffusion across PVD coated cermet tool/workpiece interface, Journal of Materials Processing Technology 157-158 (2004) 427-433.
  • [76] M. Soković, J. Kopač, L.A. Dobrzański, M. Adamiak, Wear of PVD-coated solid carbide end mills in dry high-speed cutting, Journal of Materials Processing Technology 157-158 (2004) 422-426.
  • [77] D. Pakuła, L.A. Dobrzański, K. Gołombek, M. Pancielejko, A. Křiž, Structure and properties of the Si3N4 nitride ceramics with hard wear resistant coatings, Journal of Materials Processing Technology 157-158 (2004) 388-393.
  • [78] W. Kwaśny, L.A. Dobrzański, S. Bugliosi, Ti+TiN, Ti+Ti(CxN1-x), Ti+TiC PVD coatings on the ASP 30 sintered high-speed steel, Journal of Materials Processing Technology 157-158 (2004) 370-379.
  • [79] K. Gołombek, L.A. Dobrzański, M. Soković, Properties of the wear resistant coatings deposited on the cemented carbides substrates in the cathodic arc evaporation process, Journal of Materials Processing Teclmology 157-158 (2004) 341-347.
  • [80] L.A. Dobrzański, D. Pakuła, E. Hajduczek, Structure and properties of the multi-component TiAlSiN coatings obtained in the PVD process in the nitride tool ceramics, Journal of Materials Processing Technology 157-158 (2004) 331-340.
  • [81] L.A. Dobrzański, W. Kwaśny, Z. Brytan, R. Shishkov, B. Tomov, Structure and properties of the Ti+Ti(C,N) coatings obtained in the PVD process on sintered high-speed steel, Journal of Materials Processing Technology 157-158 (2004) 312-316.
  • [82] L.A. Dobrzański, K. Gołombek, J. Kopač, M. Soković, Effect of depositing the hard surface coatings on properties of the selected cemented carbides and tool cermets, Journal of Materials Processing Technology 157-158 (2004) 304-311.
  • [83] W. Kwaśny, L.A. Dobrzański, M. Pawlyta, W. Gulbiński, Fractal nature of surface topography and physical properties of the coatings obtained using magnetron sputtering, Journal of Materials Processing Technology 157-158 (2004) 188-193.
  • [84] L.A. Dobrzański, M. Polok, P. Panjan, S. Bugliosi, M. Adamiak, Improvement of wear resistance of hot work steels by PVD coatings deposition, Journal of Materials Processing Technology 155-156 (2004) 1995-2001.
  • [85] L.A. Dobrzański, D. Pakuła, J. Mikuła, K. Gołombek, Investigation of the structure and properties of coatings deposited on ceramic tool materials, International Journal of Surface Science and Engineering 1/1 (2007) 111-124.
  • [86] M. Soković, L.A. Dobrzański, J. Kopač, L. Kosec, Cutting Properties of PVD and CVD Coated Al2O3+TiC Tool Ceramic, Materials Science Forum 539-543 (2007) 1159-1164.
  • [87] L.A. Dobrzański, D. Pakuła, Structure and Properties of the Wear Resistant Coatings Obtained in the PVD and CVD Processes on Tool Ceramics, Materials Science Forum 513 (2006) 119-133.
  • [88] A. Śliwa, W. Kwaśny, L.A. Dobrzański. R. Dziwis, Properties determination of two-layer coatings deposited by PVD techniques using computer simulation, Archives of Materials Science and Engineering 63/2 (2013) 68-74.
  • [89] D. Pakuła, M. Staszuk, L.A. Dobrzański, Investigations of the structure and properties of PVD coatings deposited onto sintered tool materials, Archives of Materials Science and Engineering 58/2 (2012) 219- 226.
  • [90] L.A. Dobrzański, M. Staszuk, R. Honysz, Application of artificial intelligence methods in PVD and CVD coatings properties modelling, Archives of Materials Science and Engineering 58/2 (2012) 152-157.
  • [91] M. Polok-Rubiniec, L.A. Dobrzański, Comparison of the CrN and TiN/(Ti,Al)N PVD coatings deposited onto plasma nitrited steel, Archives of Materials Science and Engineering 54/2 (2012) 78-85.
  • [92] L.A. Dobrzański, L.W. Żukowska, Gradient PVD coatings deposited on the sintered tool materials, Archives of Materials Science and Engineering 48/2 (2011) 103-111.
  • [93] D. Pakuła, L.A. Dobrzański, A. Křiž, M. Staszuk, Investigation of PVD coatings deposited on the Si3N4 and sialon tool ceramics, Archives of Materials Science and Engineering 46/1 (2010) 53-60.
  • [94] L.A. Dobrzański, L.W. Żukowska, W. Kwaśny, J. Mikuła, K. Gołombek, Ti(C,N) and (Ti,Al)N hard wear resistant coatings, Archives of Materials Science and Engineering 42/2 (2010) 93-103.
  • [95] M. Polok-Rubiniec, L.A. Dobrzański, M. Adamiak, Comparison of the PVD coatings, Archives of Materials Science and Engineering 38/2 (2009) 118-125.
  • [96] L.A. Dobrzański, M. Staszuk, J. Konieczny, W. Kwaśny, M. Pawlyta, Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics, Archives of Materials Science and Engineering 38/1 (2009) 48-54.
  • [97] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, T. Gawarecki, Hard gradient (Ti,Al,Si)N coating deposited on composite tool materials, Archives of Materials Science and Engineering 36/2 (2009) 69-75.
  • [98] L.A. Dobrzański, L.W. Żukowska, J. Kubacki, K. Gołombek, J. Mikuła, XPS and AES analysis of PVD coatings, Archives of Materials Science and Engineering 32/2 (2008) 99-102.
  • [99] L.A. Dobrzański, L.W. Żukowska, Properties of the multicomponent and gradient PVD coatings, Archives of Materials Science and Engineering 28/10 (2007) 621-624.
  • [100] L.A. Dobrzański, K. Lukaszkowicz, D. Pakuła, J. Mikuła, Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques, Archives of Materials Science and Engineering 28/1 (2007) 12-18.
  • [101] W. Kwaśny, M.J. Woźniak, J. Mikuła, L.A. Dobrzański, Structure, physical properties and multifractal characteristics of the PVD and CVD coatings deposition onto the Al2O3+TiC ceramics, International Journal of Computational Materials Science and Surface Engineering 1/1 (2007) 97-113.
  • [102] L.A. Dobrzański, A. Śliwa, W. Sitek, W. Kwaśny, The computer simulation of critical compressive stresses on the PVD coatings, International Journal of Computational Materials Science and Surface Engineering 1/1 (2007) 28-39.
  • [103] L.A. Dobrzański, K. Gołombek, Characterisation of the Gradient Coatings TiN/(Ti,Al,Si)N/TiN Type Deposited on Sintered Tool Materials, Metallurgia Italiana 98/4 (2006) 29-34.
  • [104] L.A. Dobrzański, K. Gołombek, Structure and Properties of Selected Cemented Carbides and Cem1ets Covered with TiN/(Ti,Al,Si)N/TiN Coatings Obtained by the Cathodic Arc Evaporation Process, Materials Research 8/2 (2005) 113-116.
  • [105] L.A. Dobrzański, Report on the main areas of the materials science and surface engineering own research, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 514-549.
  • [106] A. Śliwa, L.A. Dobrzański, W. Kwaśny, M. Tisza, L. Toth, S. Szabolcs, S. Pudmer, Innovative method of properties determination for tools covered with PVD coatings using computer simulation, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 375-382.
  • [107] L.A. Dobrzański, L.W. Żukowska, A. Śliwa, J. Mikuła, FEM modelling of internal stresses in advanced PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 259-268.
  • [108] L.A. Dobrzański, M. Staszuk, Surface modification of sialon ceramics and cemented carbides by PVD coating deposition, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 158-165.
  • [109] L.A. Dobrzański, L.W. Żukowska, Structure and properties of gradient PVD coatings deposited on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 44/2 (2011) 115-139.
  • [110] A. Śliwa, L.A. Dobrzański, W. Kwaśny, M. Staszuk, Simulation of the microhardness and internal stresses measurement of PVD coatings by use of FEM, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 684-691.
  • [111] L.A. Dobrzański, M. Staszuk, PVD and CVD gradient coatings on sintered carbides and sialon tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 552-576.
  • [112] M. Polok-Rubiniec, L.A. Dobrzański, M. Adamiak, Comparison of the PVD coatings deposited onto plasma nitrited steel, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 172-179.
  • [113] K. Lukaszkowicz, L.A. Dobrzański, W. Kwaśny, K. Labisz, M. Pancielejko, Microstructure and mechanical properties of nanocomposite coatings deposited by cathodic arc evaporation, Journal of Achievements in Materials and Manufacturing Engineering 42/2 (2010) 156-163.
  • [114] L.A. Dobrzański, M. Staszuk, M. Pawlyta, J. Konieczny, The investigations of (Ti,Al)N and (Al,Ti)N coatings obtained by PVD process onto sintered cutting tools, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 148-155.
  • [115] L.A. Dobrzański, A. Śliwa, L.W. Żukowska, J. Mikuła, K. Gołombek, Structure and mechanical properties of PVD coatings for tool materials, Journal of Achievements in Materials and Manufacturing Engineering 42/2 (2010) 33-41.
  • [116] M. Polok-Rubiniec, K. Lukaszkowicz, L.A. Dobrzański, Comparison of nanostructure and duplex PVD coatings deposited onto hot work tool steel substrate, Journal of Achievements tn Materials and Manufacturing Engineering 4111-2 (2010) 187-194.
  • [117] A. Śliwa, J. Mikuła, L.A. Dobrzański, FEM application for modelling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering 41/1-2 (2010) 164-171.
  • [118] L.A. Dobrzański, M. Staszuk, K. Gołombek, M. Pancielejko, Properties of Ti(B,N) coatings deposited onto cemented carbides and sialon tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 41/1-2 (2010) 66-73.
  • [119] L.A. Dobrzański, M. Staszuk, A. Křiž, K. Lukaszkowicz, Structure and mechanical properties of PVD gradient coatings deposited onto tool steels and sialon tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 36-43.
  • [120] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, P. Podstawski, Functional properties of the sintered tool materials with (Ti,Al)N coating, Journal of Achievements in Materials and Manufacturing Engineering 36/2 (2009) 134-141.
  • [121] A. Śliwa, J. Mikuła, K. Gołombek, L.A. Dobrzański, FEM modelling of internal stresses in PVD coated FGM, Journal of Achievements in Materials and Manufacturing Engineering 36/1 (2009) 71-78.
  • [122] A. Śliwa, L.A. Dobrzański, W. Kwaśny, W. Sitek, The computer simulation of internal stresses on the PVD coatings, Archives of Computational Materials Science and Surface Engineering 1/3 (2009) 183-188.
  • [123] L.A. Dobrzański, S. Skrzypek, D. Pakuła, J. Mikuła, A. Křiž, Influence of the PVD and CVD technologies on the residual macrostresses and functional properties of the coated tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 162-168.
  • [124] L.A. Dobrzański, M. Staszuk, M. Pawlyta, W. Kwaśny, M. Pancielejko, Characteristic of Ti(C,N) and (Ti,Zr)N gradient PVD coatings deposited onto sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 629-634.
  • [125] L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Multilayer and gradient PVD coatings on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 170-190.
  • [126] K. Gołombek, J. Mikuła, D. Pakuła, L. Żukowska, L.A. Dobrzański, Sintered tool materials with multicomponent PVD gradient coatings, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 15-22.
  • [127] M. Polok-Rubiniec, L.A. Dobrzański, M. Adamiak, The properties and wear resistance of the CrN PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 30/2 (2008) 165-171.
  • [128] A. Śliwa, L.A. Dobrzański, W. Kwaśny, W. Sitek, Finite Element Method application for modeling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 171-174.
  • [129] M. Polok-Rubiniec, L.A. Dobrzański, K. Lukaszkowicz, M. Adamiak, Comparison of the structure, properties and wear resistance of the TiN PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 87-90.
  • [130] K. Lukaszkowicz, L.A. Dobrzański, M. Staszuk, M. Pancielejko, Comparison of the PVD gradient coatings deposited onto X40CrMoV5-1 and HS6-5-2 tool steel substrate, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 79-82.
  • [131] W. Kwaśny, W. Sitek, L.A. Dobrzański, Modelling of properties of the PVD coatings using neural networks, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 163-166.
  • [132] W. Kwaśny, L.A. Dobrzański, M. Król, J. Mikuła, Fractal and multifractal characteristics of PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 159-162.
  • [133] L.A. Dobrzański, A. Śliwa. W. Kwaśny, The computer simulation of stresses in the Ti+Ti(CxN1-x) coatings obtained in the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 155-158.
  • [134] K. Lukaszkowicz, L.A. Dobrzański, M. Pancielejko, Mechanical properties of the PVD gradient coatings deposited onto the hot work tool steel X40CrMoV5-1, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 115-118.
  • [135] K. Gołombek, L.A. Dobrzański, Hard and wear resistant coatings for cutting tools, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 107-110.
  • [136] D. Pakuła, L.A. Dobrzański, Investigation of the structure and properties of PVD and CVD coatings deposited on the Si3N4 nitride ceramics, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 79-82.
  • [137] J. Mikuła, L.A. Dobrzański, PVD and CVD coating systems on oxide tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 75-78.
  • [138] L.A. Dobrzański, L. Wosińska, J. Mikuła, K. Gołombek, T. Gawarecki, Investigation of hard gradient PVD (Ti,Al,Si)N coating, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 59-62.
  • [139] L.A. Dobrzański, M. Staszuk, J. Konieczny, J. Lelątko, Structure of gradient coatings deposited by CAE-PVD techniques, Journal of Achievements in Materials and Manufacturing Engineering 24/2(2007) 55-58.
  • [140] W. Kwaśny, D. Pakuła, M. Wozniak, L.A. Dobrzański, Fractal and multifractal characteristics of CVD coatings deposited onto the nitride tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 371-374.
  • [141] L.A. Dobrzański, A. Śliwa, W. Kwaśny, The computer simulation of internal stresses in coatings obtained by the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 355-358.
  • [142] M. Polok-Rubiniec, L.A. Dobrzański, M. Adamiak, Comparison of the adhesion and wear resistance of the PVD coatings, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 279-282.
  • [143] L.A. Dobrzański, L. Wosińska, K. Gołombek, J. Mikuła, Structure of multicomponent and gradient PVD coatings deposited on sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 99-102.
  • [144] L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Improvement of tool materials by deposition of gradient and multilayers coatings, Journal of Achievements in Materials and Manufacturing Engineering 19/1 (2006) 86-91.
  • [145] L.A. Dobrzański, M. Staszuk, A. Śliwa, Simulation of the microhardness measurement of PVD coatings by use of FEM, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 279-282.
  • [146] L.A. Dobrzański, K. Lukaszkowicz, J. Mikuła, D. Pakuła, Structure and corrosion resistance of gradient and multilayer coatings, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 75-78.
  • [147] W. Kwaśny, J. Mikuła, L.A. Dobrzański, Fractal and multifractal characteristics of coatings deposited on pure oxide ceramics, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 257-260.
  • [148] L.A. Dobrzański, A. Śliwa, W. Kwaśny, W. Sitek, The computer simulation of stresses in the Ti+TiC coatings obtained in the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 241-244.
  • [149] L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Cutting ability improvement of coated tool materials, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 41-44.
  • [150] L.A. Dobrzański, K. Gołombek, Gradient coatings deposited by Cathodic Arc Evaporation: characteristic of structure and properties, Journal of Achievements in Materials and Manufacturing Engineering 14/1-2 (2006) 48-53.
  • [151] L.A. Dobrzański, M. Staszuk, K. Gołombek, J. Mikuła, Structure and properties of PVD coatings deposited on to SiAlON tool ceramics, Visnik Tehnologichnogo Universitetu Podilla 4/2 (2007) 21-24.
  • [152] K. Lukaszkowicz. L.A. Dobrzański, Structural and phase analysis of CrAlSiN/DLC deposited by hybrid PVD/PACVD method, Materials Engineering 34/4 (2013) 320-323.
  • [153] A. Śliwa, W. Kwaśny, L.A. Dobrzański, Computer simulation of stresses in coatings obtained in the PVD process, Materials Engineering 31/3 (2010) 732-734.
  • [154] K. Lukaszkowicz, J. Mikuła K. Gołombek, L.A. Dobrzański, J. Szewczenko, M. Pancielejko, Structure and mechanical properties of nanocomposite coatings deposited by PVD process onto tool steel substrates, Materials Engineering 29/6 (2008) 732-737.
  • [155] W. Kwaśny, W. Sitek, D. Pakuła, L.A. Dobrzański, Application of neural networks for analysis of relationship between the service properties of CVD coatings and their multifractal parameters, Materials Engineering 28/3-4 (2007) 660-665.
  • [156] L.A. Dobrzański, L. Wosińska, J. Mikuła, K. Gołombek, Multicomponent and gradient PVD coatings deposited on the sintered tool materials, Materials Engineering 28/3-4 (2007) 627-631.
  • [157] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Formation of structure and properties of engineering materials, Silesian University of Technology Publishing, Gliwice, 2013, 1-492 (in Polish).
  • [158] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Engineering materials surface treatment, Open Access Library 5 (2011) 1-480 (in Polish).
  • [159] L.A. Dobrzański, The outstanding achievements in the scientific activity of the Institute of Engineering Materials and Biomaterials of the Silesian University of Technology in Gliwice, Poland, in: Y.I. Shalapko, L.A. Dobrzański (Eds.), Scientific basis of modem technology: experience and prospects. Monograph, Department of Principles of Engineering Mechanics of Khmelnitsky National University, Khmelnitsky, Ukraine, 2011, 545-600.
  • [160] L.A. Dobrzański, K. Gołombek, K. Lukaszkowicz, Physical Vapor Deposition in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2719-2754.
  • [161] K. Lukaszkowicz, L.A. Dobrzański, J. Sondor, Microstructure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology, in: B.S.R. Reddy (Ed.), Advances in Diverse Industrial Applications of Nanocomposites, InTech, Rijeka, Croatia, 2011, 1-16.
  • [162] M. Polok-Rubiniec, K. Lukaszkowicz, L.A. Dobrzański, M. Adamiak, Comparison of the PVD coatings deposited onto hot work tool steel and brass substrates, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 195-198.
  • [163] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, M. Król, S. Malara, J. Domagała-Dubiel, Mg-Al-Zn alloys structure and properties, Open Access Library 5/11 (2012) 1-319 (in Polish).
  • [164] L.A. Dobrzański, K. Lukaszkowicz, A. Zarychta, L. Cunha, Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate, Journal of Materials Processing Technology 164-165 (2005) 816-821.
  • [165] K. Lukaszkowicz, L.A. Dobrzański, A. Zarychta, Structure, chemical and phase compositions of coatings deposited with the reactive magnetron sputtering onto the brass substrate, Journal of Materials Processing Technology 157-158 (2004) 380-387.
  • [166] L.A. Dobrzański, K. Lukaszkowicz, Erosion resistance and tribological properties of coatings deposited by reactive magnetron sputtering method onto the brass substrate, Journal of Materials Processing Technology 157-158 (2004) 317-323.
  • [167] L.A. Dobrzański, K. Lukaszkowicz, L. Cunha, Properties of PVD Coatings on a Brass Substrate, Materials Science Forum 437-438 (2003) 199-202.
  • [168] L.A. Dobrzański, K. Lukaszkowicz, Comparison of Structure and Properties of the PVD, Hybrid (Galvanic + PVD) and Galvanic Coatings Deposited onto the Brass Substrate, Materials Science Forum 591-593 (2008) 860-864.
  • [169] T. Tański, L.A. Dobrzański, S. Rusz, W. Matysiak, M. Kraus, Characteristic features of fine-grained coatings deposited on magnesium alloys, Archives of Materials Science and Engineering 66/1 (2014) 13-20.
  • [170] T. Tański, K. Labisz, L.A. Dobrzański, M. Wiśniowski, W. Matysiak, TEM microstructure investigations of aluminium alloys used as coating substrate, Archives of Materials Science and Engineering 59/2 (2013) 82-92.
  • [171] J. Konieczny, K. Labisz, J. Wieczorek, L.A. Dobrzański, Stereometry specification of anodised and PVD coated surface of aluminium alloy, Archives of Materials Science and Engineering 38/2 (2009) 85-92.
  • [172] L.A. Dobrzański, K. Lukaszkowicz, K. Labisz, Structure, texture and chemical composition of coatings deposited by PVD techniques, Archives of Materials Science and Engineering 37/1 (2009) 45-52.
  • [173] L.A. Dobrzański, K. Lukaszkowicz, Mechanical properties of monolayer coatings deposited by PVD techniques, Archives of Materials Science and Engineering 28/9 (2007) 549-556.
  • [174] L.A. Dobrzański, K. Lukaszkowicz, K. Labisz, Structure of monolayer coatings deposited by PVD techniques, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 271-274.
  • [175] K. Lukaszkowicz, L.A. Dobrzański, A. Zarychta, L. Cunha, Mechanical properties of multilayer coatings deposited by PVD techniques onto the brass substrate, Journal of Achievements in Materials and Manufacturing Engineering 15/1-2 (2006) 47-52.
  • [176] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, Foresight of the Surface Technology in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2587-2637.
  • [177] T. Tański, E. Jonda, K. Labisz, L.A. Dobrzański, Toughness of Laser-Treated Surface Layers Obtained by Alloying and Feeding of Ceramic Powders, in: S. Zhang (Ed.), Thin Films and Coatings. Toughening and Toughness Characterization, CRC Press, Boca Raton, 2015, 225-314.
  • [178] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T. Tański, E. Jonda, A. Drygała, M. Bonek, Laser Surface Treatment in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2677-2717.
  • [179] T. Tański, W. Pakieła, M. Wiśniowski, L.A. Dobrzański, Shaping of Surface Layer Structure and Mechanical Properties After Laser Treatment of Aluminium Alloys, in: A. Öchsner, H. Altenbach (Eds.), Mechanical and Materials Engineering of Modern Structure and Component Design, Springer International Publishing, Cham, 2015, 85-96.
  • [180] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser surface treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (Eds.), Laser Surface Engineering. Processes and Applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Ltd, Amsterdam, 2015, 3-32.
  • [181] L.A. Dobrzański, K. Labisz, E. Jonda, A. Polok, K. Lukaszkowicz, Comparison of structure and properties of the surface layer of the 32CrMoV12-20 and X40CrMoV5-1 steel alloyed with high power diode laser, in: A. Kneissl (Ed.), Fortschritte in der Metallographie, Berichte der 12. Internationalen Metallographie-Tagung, Loeben, Austria, Sonderbände der Praktischen Metallographie 38, Werkstoff-Informationsgesellschaft mbH, Frankfurt, 2006, 289-296.
  • [182] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, Journal of Materials Processing Technology 191/1-3 (2007) 321-325.
  • [183] L.A. Dobrzański, M. Piec, A. Klimpel, Z. Trojanowa, Surface modification of hot work tool steel by highpower diode laser, International Journal of Machine Tools and Manufacture 47/5 (2007) 773-778.
  • [184] A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2 steel using cobalt-based powders, Journal of Materials Processing Technology 175/1-3 (2006) 25 1-256.
  • [185] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Structure and properties of laser alloyed Surface layers on the hot-work tool steel, Journal of Materials Processing Technology 175/1-3 (2006) 45-54.
  • [186] L. A. Dobrzański, M. Bonek, E. Hajduczek., A. Klimpel, A. Lisiecki, Comparison of the structures of the hot-work tool steels laser modified surface layers, Journal of Materials Processing Technology 164-165 (2005) 1014-1024.
  • [187] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser, Applied Surface Science 247/1-4 (2005) 328-332.
  • [188] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, A. Lisiecki, Application of high power diode laser (HPDL) for alloying of X40CrMoV5-1 steel surface layer by tungsten carbides, Journal of Materials Processing Technology 155-156 (2004) 1956-1963.
  • [189] L.A. Dobrzański, M. Bonek, A. Klimpel, A. Lisiecki, Surface-Layer's Structure of X40CrMoV5-1 Steel Remelted and/or WC Alloyed with HPDL Laser, Materials Science Forum 437-438 (2003) 69-72.
  • [190] Z. Brytan, M. Bonek, L.A. Dobrzański, W. Pakieła, Surface layer properties of sintered ferritic stainless steel remelted and alloyed with FeNi and Ni by HPDL laser, Advanced Materials Research 291-294 (2011) 1425-1428.
  • [191] M. Bonek, G. Matula, L.A. Dobrzański, Effect of laser surface melting on structure and properties of a high speed tool steel, Advanced Materials Research 291-294 (2011) 1365-1368.
  • [192] Z. Brytan, M. Bonek, L.A. Dobrzański, D. Ugues, M. Actis Grande, The Laser Surface Remelting of Austenitic Stainless Steel, Materials Science Forum 654-656 (201 0) 2511-2514.
  • [193] M. Bonek, L.A. Dobrzański, Characterization performance of laser melted commercial tool steels, Materials Science Forum 654-656 (2010) 1848-1851.
  • [194] G. Matula, M. Bonek, L.A. Dobrzański, Comparison of Structure and Properties of Hard Coatings on Commercial Tool Materials Manufactured with the Pressureless Forming Method or Laser Treatment, Materials Science Forum 638-642 (2010) 1830-1835.
  • [195] M. Piec, L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Laser Alloying with WC Ceramic Powder in Hot Work Tool Steel Using a High Power Diode Laser (HPDL), Advanced Materials Research 15-17 (2007) 193-198.
  • [196] L.A. Dobrzański, M. Bonek, M. Piec, E. Jonda, Diode Laser Modification of Surface Gradient Layer Properties of a Hot-work Tool Steel, Materials Science Forum 532-533 (2006) 657-660.
  • [197] L.A. Dobrzański, K. Labisz, M. Piec, J. Lelątko, A. Klimpel, Structure and Properties of the 32CrMoV12-28 Steel Alloyed with WC Powder using HPDL Laser, Materials Science Forum 530-531 (2006) 334-339.
  • [198] L.A. Dobrzański, M. Piec, Z. Trojanowa, J. Lelątko, A. Klimpel, Structure and Properties of Gradient Layers Using High Power Diode Laser, Materials Science Forum 530-531 (2006) 269-274.
  • [199] L.A. Dobrzański, K. Labisz, A. Klimpel, Comparison of Mechanical Properties of the 32CrMoV12-28 Hot Work Tool Steels Alloyed with WC, VC and TaC Powder Using HPDL Laser, Key Engineering Materials 324-325 (2006) 1233-1236.
  • [200] L.A. Dobrzański, E. Jonda, W. Pakieła, M. Bilewicz, Improvement of wear resistance of the hot work tool steel by laser surface feeding with ceramic powder, Archives of Materials Science and Engineering 60/2 (2013) 64-71.
  • [201] L.A. Dobrzański, M. Bonek, K. Labisz, Effect of laser surface alloying on structure of a commercial tool steel, International Journal of Microstructure and Materials Properties 8/1-2 (2013) 27-37.
  • [202] L.A. Dobrzański, E. Jonda, A. Klimpel, A. Lisiecki, The influence of laser re-melting and alloying on the structure and properties of the X40CrMov5-1 steel surface layer, Welding International 26 (2012) 411-415.
  • [203] L.A. Dobrzański, E. Jonda, K. Labisz, Comparison of the abrasion wear resistance of the laser alloyed hot work tool steels, Archives of Materials Science and Engineering 55/2 (2012) 85-92.
  • [204] L.A. Dobrzański, E. Jonda, K. Labisz, The influence of laser modification on the structure and properties of the X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels, Archives of Materials Science and Engineering 41/2 (2010) 104-111.
  • [205] L.A. Dobrzański, E. Jonda, A. Klimpel, Laser surface treatment of the hot work tool steel alloyed with TaC and VC carbide powders, Archives of Materials Science and Engineering 37/1 (2009) 53-60.
  • [206] L.A. Dobrzański, K. Labisz, M. Piec, A. Klimpel, Mechanical properties of the surface layer of the laser alloyed 32CrMoV12-28 steel, Archives of Materials Science and Engineering 29/1 (2008) 57-60.
  • [207] L.A. Dobrzański, E. Jonda, A. Křiž, K. Lukaszkowicz, Mechanical and tribological properties of the surface layer of the hot work tool steel obtained by laser alloying, Archives of Materials Science and Engineering 28/7 (2007) 389-396.
  • [208] L.A. Dobrzański, A. Polok, P. Zarychta, E. Jonda, M. Piec, K. Labisz, Modelling of properties of the alloy tool steels after laser surface treatment. International Journal of Computational Materials Science and Surface Engineering 1/5 (2007) 526-539.
  • [209] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, Effect of Diode Laser Surface Alloying of Hot-Work Tool Steel, Metallurgia ltaliana 98/4 (2006) 41-46.
  • [210] Z. Brytan, L.A. Dobrzański, W. Pakieła, Laser surface alloying of sintered stainless steels with SiC powder, Journal of Achievements in Materials and Manufacturing Engineering 47/1 (2011) 42-56.
  • [211] L.A Dobrzański, E. Jonda, K. Labisz, M. Bonek, A. Klimpel, The comparision of tribological properties of the surface layer of the hot work tool steels obtained by laser alloying, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 142-147.
  • [212] K. Labisz, L.A. Dobrzański, E. Jonda, J. Lelątko, Comparison of surface laser alloying of chosen tool steel using AlO3 and ZrO2 powder, Journal of Achievements in Materials and Manufacturing Engineering 39/1 (2010) 87-94.
  • [213] L.A. Dobrzański, E. Jonda, K. Labisz, Structure and properties of surface layer of hot-work tool steels alloyed using high power diode laser, Journal of Achievements in Materials and Manufacturing Engineering 3 7/2 (2009) 617-621.
  • [214] L.A. Dobrzański, K. Labisz, A. Klimpel, Structure and properties of the laser alloyed 32CrMoV 12-28 with ceramic powder, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 53-60.
  • [215] L.A Dobrzański, M. Bonek, E. Hajduczek, K. Labisz, M. Piec, E. Jonda, A. Polok, Structure and properties laser alloyed gradient surface layers of the hot-work tool steels, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 148-169.
  • [216] L.A. Dobrzański, K. Labisz, M. Bonek, A. Klimpel, Comparison of 32CrMoV12-28 steel alloyed with WC, VC and TaC powder using HPDL laser, Journal of Achievements in Materials and Manufacturing Engineering 30/2 (2008) 187-192.
  • [217] L.A. Dobrzański, K. Labisz, E. Jonda, Laser treatment of the surface layer of 32CrMoV12-28 and X40CrMoV5-1 steels, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 63-70.
  • [218] M. Bonek, M. Piec, L.A. Dobrzański, The study of propetties of laser modified hot-work tool steel surface layer, Journal of Achievements in Materials and Manufacturing Engineering 28/1 (2008) 75-78.
  • [219] L.A Dobrzański, E. Jonda, K. Lukaszkowicz, K. Labisz, A. Klimpel, Surface modification of the X40CrMoV5-1 steel by laser alloying and PVD coatings deposition, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 179-182.
  • [220) L.A. Dobrzański, M. Piec, K. Labisz, M. Bonek, A. Klimpel, Functional properties of surface layers of X38CrMoV5-3 hot work tool steel alloyed with HPDL laser, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 191-194.
  • [221] M. Bonek, L.A. Dobrzański, A. Klimpel, Structure and properties of hot-work tool steel alloyed by we carbides by a use of high power diode laser, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 175-178.
  • [222] L.A. Dobrzański, E. Jonda, A. Polok, A. Klimpel, Comparison of the thermal fatigue surface layers of the X40CrMoV5-1 hot work tool steels laser alloyed, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 135-138.
  • [223] L.A. Dobrzański, K. Labisz, M. Piec, A. Klimpel, Modelling of surface layer of the 32CrMoV12-28 tool steel using HPDL laser for alloying with TiC powder, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 27-34.
  • [224] L.A. Dobrzański, M. Piec, A. Klimpel, Improvement of the hot work tool steel surface layers properties using a high power diode laser, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 13-22.
  • [225] M. Bonek, L.A. Dobrzański, M. Piec, E. Hajduczek, A. Klimpel, Crystallisation mechanism of laser alloyed gradient layer on tool steel, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 411-414.
  • [226] L.A. Dobrzański, K. Labisz, A. Klimpel, J. Lelątko, Modelling of gradient layer properties of the 32CrMoV12-27 surface layer alloyed with WC powder, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 343-346.
  • [227] L.A. Dobrzański, M. Piec, M. Bonek, E. Jonda, A. Klimpel, Mechanical and tribological properties of the laser alloyed surface coatings, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 235-238.
  • [228] L.A. Dobrzański, K. Labisz, A. Klimpel, Effect of laser alloying on thermal fatigue and mechanical properties of the 32CrMoV12-20 steel, Journal of Achievements in Materials and Manufacturing Engineering 19/1 (2006) 83-90.
  • [229] L.A. Dobrzański, E. Jonda, K. Lukaszkowicz, A. Křiž, Structure and tribological behavior of Surface layer of laser modified X40CrMoV5-1 steel, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 343-346.
  • [230] L.A. Dobrzański, A. Polok, E. Jonda, Structure and properties of surface layers obtained by alloying of the hot work tool steels, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 329-332.
  • [231] L.A. Dobrzański, K. Labisz, A. Klimpel, Mechanical properties and structure changes of the laser alloyed 32CrMoV12-28 steel, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 325-328.
  • [232] M. Bonek, L.A. Dobrzański, Functional properties of laser modified surface of tool steel, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 313-316.
  • [233] L.A. Dobrzański, E. Jonda, A. Polok, Comparison of the abrasion wear resistance of the X40CrMoV5-1 and 55NiCrMoV7 hot work tool steels with their surface layer enriched with the ceramic powders, Journal of Achievements in Materials and Manufacturing Engineering 15/1-2 (2006) 32-38.
  • [234] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Laser modiftcation of surface layer properties of a hot-work tool steel, Journal of Achievements in Materials and Manufacturing Engineering 14/1-2 (2006) 152-156.
  • [235] L.A. Dobrzański, M. Sroka, Functional properties of the laser alloyed surface coatings, Visnik Tehnologichnogo Universitetu Podilla 4/2 (2007) 90-93.
  • [236] L.A. Dobrzański, B. Dołżanska, G. Matula, Structure and properties of gradient cermets reinforcer with the (W,Ti)C carbides, Visnik Tehnologichnogo Universitetu Podilla 42 (2007) 15-20.
  • [237] L.A. Dobrzański, E. Jonda, K. Labisz, Structure and properties of surface layer of hot work tool steels alloyed using high power diode laser (HPDL), Archives of Materials Science 29/3 (2008) 102-109.
  • [238] T. Tański, L.A. Dobrzański, W. Pakieła, K. Labisz, M. Roszak, B. Tomiczek, Structure and properties of the aluminium alloy AlSi12CuNiMg after laser surface treatment, Advanced Materials Research 1036 (2014) 40-45.
  • [239] L.A. Dobrzański, T. Tański, S. Malara, J. Domagała, A. Klimpel, Laser Surface Treatment of Mg-Al-Zn Alloys, Strojarstvo 53/1 (2011) 5-10.
  • [240] K. Labisz, T. Tański, L.A. Dobrzański, D. Janicki, K. Korcina, HPDL laser alloying of Al-Si-Cu alloy with Al2O3 powder, Archives of Materials Science and Engineering 63/1 (2013) 36-45.
  • [241] K. Labisz, T. Tański, L.A. Dobrzański, HPDL laser alloying of heat treated Al-Si-Cu alloy, Archives of Materials Science and Engineering 54/1 (2012) 13-21.
  • [242] L.A. Dobrzański, J. Domagała, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of cast magnesium alloys, Archives of Materials Science and Engineering 35/2 (2009) 101-106.
  • [243] L.A. Dobrzański, S. Malara, J. Domagala, T. Tański, K. Gołombek, Influence of the laser modification of surface on properties and structure of magnesium alloys, Archives of Materials Science and Engineering 35/2 (2009) 95-100.
  • [244] L.A. Dobrzański, J. Domagała, S. Malara, T. Tański, W. Kwaśny, Structure changes and mechanical properties of laser alloyed magnesium cast alloys, Archives of Materials Science and Engineering 35/2 (2009) 77-82.
  • [245] L.A. Dobrzański, S. Malara, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloys with silicon carbide powder, Archives of Materials Science and Engineering 35/1 (2009) 54-60.
  • [246] L.A. Dobrzański, J. Domagała, T. Tański, A. Klimpel, D. Janicki, Characteristic of Mg-Al-Zn alloys after laser treatment, Archives of Materials Science and Engineering 34/2 (2008) 69-74.
  • [247] L.A. Dobrzański, J. Domagała, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloy with WC powder, Archives of Materials Science and Engineering 30/2 (2008) 113-116.
  • [248] L.A. Dobrzański, T. Tański, J. Domagała, S. Malara, M. Król, Effect of high power diode laser surface melting and cooling rate on microstructure and properties of magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 238-257.
  • [249] L.A. Dobrzański, S. Malara, T. Tański, Laser Surface treatment of magnesium alloys with aluminium oxide powder, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 70-77.
  • [250] L.A. Dobrzański, J. Domagała-Dubiel, K. Labisz, E. Hajduczek, A. Klimpel, Effect of laser treatment on microstructure and properties of cast magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 37/1 (2009) 57-64.
  • [251] L.A. Dobrzański, T. Tański, J. Domagala, M. Król, S. Malara, A. Klimpel, Structure and properties of the Mg alloys in as-cast state and after heat and laser treatment, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 123-14 7.
  • [252] L.A. Dobrzański, J. Domagala, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloy with WC and TiC powders using HPDL, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 179-186.
  • [253] L.A. Dobrzański, T. Tański, K. Labisz, W. Pakiela, Structure and properties of AlMg5Si2Mn atter laser feeding, Herald of Khmelnytskyi National University, Technical Sciences 3/213 (2014) 125-128.
  • [254] L.A. Dobrzański, T. Tański, S. Malara, Effect of the heat and surface laser treatment on the corrosion degradation of the Mg-AI alloys, Materials Engineering - Materiálové inžinierstvo 18/3 (2011) 85-92.
  • [255] A. Drygała, L.A. Dobrzański, M. Szindler, M.M. Szindler, M. Prokopiuk vel Prokopowicz, E. Jonda, Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon, International Journal of Hydrogen Energy 41/18 (2015) 7563-7567, DOI: 10.1016/j.ijhydene.2015.12.180
  • [256] L.A. Dobrzański, M. Szindler, M.M. Szindler, B. Hajduk, S. Kotowicz, The impact of atomic layer deposition technological parameters on optical properties and morphology of Al2O3 thin films, Optica Applicata 45/4 (2015) 573-583.
  • [257] M. Musztyfaga-Staszuk, L.A. Dobrzański, The use of laser technology to shape properties of the contacts of silicon solar cells and their structure, Central European Journal of Physics 12/12 (2014) 836-842.
  • [258] L.A. Dobrzański, M. Szindler, A. Drygała, M.M. Szindler, Silicon solar cells with Al2O3 antireflection coating, Central European Journal of Physics 12/9 (2014) 666-670.
  • [259] M. Musztyfaga-Staszuk, L.A. Dobrzański, S. Rusz, M. Staszuk, Application examples for the different measurement modes of electrical properties of the solar cells, Archives of Metallurgy and Materials 59/1 (2014) 247-251.
  • [260] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Final Manufacturing Process of Front Side Metallisation on Silicon Solar Cells Using Conventional and Unconventional Techniques, Strojniški Vestnik - Journal of Mechanical Engineering 59/3 (2013) 175-182.
  • [261] L.A. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zięba, Laser Surface treatment of multicrystalline silicon for enhancing optical properties, Journal of Materials Processing Technology 201/1-3 (2008) 291-296.
  • [262] L.A. Dobrzański, A. Drygała, Laser processing of multi crystalline silicon for texturization of solar cells, Journal of Materials Processing Technology 191/1-3 (2007) 228-231.
  • [263] L.A. Dobrzański, A. Drygała, Influence of laser processing on polycrystalline silicon surface, Materials Science Forum 706-709 (2012) 829-834.
  • [264] L.A. Dobrzański, M. Szindler, M.M. Szindler, Surface morphology and optical properties of Al2O3 thin films deposited by ALD method, Archives of Materials Science and Engineering 73/1 (2015) 18-24.
  • [265] L.A. Dobrzański, M. Szindler, M.M. Szindler, B. Hajduk, Sol-gel Al2O3 antireflection coatings for silicon solar cells, Archives of Materials Science and Engineering 67/1 (2014) 24-31.
  • [266] M. Musztyfaga, L.A. Dobrzański, S. Rusz, L. Prokop, S. Misak, Application of modern technique to set the parameters of the monocrystalline solar cell and its structure, Electrotechnical Review 89/11 (2013) 24-26.
  • [267] J. Konieczny, L.A. Dobrzański, A. Drygała, J. Lelątko, TEM investigations of laser texturized polycrystalline silicon solar cell, Archives of Materials Science and Engineering 56/1 (2012) 22-29.
  • [268] L.A. Dobrzański, A. Drygała, M. Giedroć, Application of crystalline silicon solar cells in photovoltaic modules, Archives of Materials Science and Engineering 44/2 (2010) 96-103.
  • [269] L.A. Dobrzański, A. Drygała, P. Panek, M. Lipiński, P. Zięba, Development of the laser method of multicrystalline silicon surface texturization, Archives of Materials Science and Engineering 38/1 (2009) 5-11.
  • [270] L.A. Dobrzański, M. Szczęsna, M. Szindler, A. Drygała, Electrical properties mono- and polycrystalline silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 59/2 (2013) 67-74.
  • [271] L.A. Dobrzański, M. Szindler, Al2O3 antireflection coatings for silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 59/1 (2013) 13-19.
  • [272] L.A. Dobrzański, M. Musztyfaga, M. Giedroć, P. Panek, Investigation of various properties of monocrystalline silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 307-315.
  • [273] L.A. Dobrzański, A. Drygała, M. Giedroć, M. Macek, Monocrystalline silicon solar cells applied in photovoltaic system, Journal of Achievements in Materials and Manufacturing Engineering 53/1 (2012) 7-13.
  • [274] L.A. Dobrzański, M. Szindler, Sol gel TiO2 antireflection coatings for silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 52/1 (2012) 7-14.
  • [275] L.A. Dobrzański, M. Musztyfaga, Effect of the front electrode metallisation process on electrical 201B parameters of a silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 48/2 (2011) 115-144.
  • [276] L.A. Dobrzański, M. Musztyfaga, A. Drygała, W. Kwaśny, P. Panek, Structure and electrical properties of screen printed contacts on silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 45/2 (2011) 141-147.
  • [277] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Selective laser sintering method of manufacturing front electrode of silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 111-119.
  • [278] L.A. Dobrzański, M. Musztyfaga, A. Drygała, P. Panek, Investigation of the screen printed contacts of silicon solar cells using Transmission Line Model, Journal of Achievements in Materials and Manufacturing Engineering 41/1-2 (2010) 57-65.
  • [279] L.A. Dobrzański, A. Drygała, A. Januszka, Formation of photovoltaic modules based on polycrystalline solar cells, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 607-616.
  • [280] J. Weszka, L.A. Dobrzański, P. Jarka, J. Jurusik, B. Hajduk, M. Bruma, J. Konieczny, D. Mańkowski, Studying of spin-coated oxide-Si properties, Journal of Achievements in Materials and Manufactming Engineering 37/2 (2009) 505-511.
  • [281] L.A. Dobrzański, A. Drygała, Surface texturing of multicrystalline silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 77-82.
  • [282] L.A. Dobrzański, A. Drygała, Laser texturisation in technology of multicrystalline silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 7-14.
  • [283] L.A. Dobrzański, A. Drygała, P. Panek, M. Lipiński, P. Zięba, Application of laser in multicrystalline silicon surface processing, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 179-182.
  • [284] L.A. Dobrzański, A. Drygała, J. Konieczny, J. Lelątko, Structure of laser treated multicrystalline silicon wafers, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 69-72.
  • [285] L.A. Dobrzański, L. Wosińska, B. Dołżańska, A. Drygała, Comparison of electrical characteristics of silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 215-218.
  • [286] L.A. Dobrzański, A. Drygała, Processing of silicon surface by Nd:YAG laser, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 321-324.
  • [287] L.A. Dobrzański, M. Musztyfaga-Staszuk, M. Staszuk, Metallisation technology of silicon solar cells using the convectional and laser technique, Pamukkale University Journal of Engineering Sciences 19/7 (2013) 275-280.
  • [288] L.A. Dobrzański, M. Szindler, Sol-gel and ALD antireflection coatings or silicon solar cells, Electronics - constructions, technologies, applications 53/8 (2012) 125-127.
  • [289] L.A. Dobrzański, A. Drygała, M. Musztyfaga, Laser texturing and microtreatment of silicon for photovoltaics, Electronics - constructions, technologies, applications 53/6 (2012) 89-91.
  • [290] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, TWIP Mechanism in High-Mu Austenitic Steels and Its Effect on Steels, in: M. Muruganant et al. (Eds.), Frontiers in Materials Processing, Applications, Research and Technology. Springer Nature Singapore Pte Ltd. 2018, 321-331, DOI: doi.org/10.1007/978-981-10-4819-727
  • [291] L.A. Dobrzański, J. Mazurkiewicz, W. Borek, M. Czaja, Newly-Developed High-Manganese Fe-Mn(AI,Si) Austenitic TWIP and TRIP Steels, in: J. Zhao, Z. Jiang (Eds.), Rolling of Advanced High Strength Steels: Theory, Simulation and Practice, CRC Press, Taylor & Francis Group, 2017, 224-288.
  • [292] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tański, Influence of hot-working conditions on a structure of X11MnSiAl17-1-3 steel for automotive industry, International Journal of Materials and Product Technology 51/3 (2015) 264-280.
  • [293] L.A. Dobrzański, W. Borek, Thermo-mechanical treatment of Fe-Mn-(Al,Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12/3 (2012) 299-304.
  • [294] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Influence of Thermo-Mechanical Treatments on Structure and Mechanical Properties of High-Mn Steel, Advanced Materials Research 1127 (2015) 113-119.
  • [295] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tański, Influence of hot-working conditions on a structure of X11MnSiAl17-1-3 steel, Advanced Materials Research 1036 (2014) 122-127.
  • [296] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Mechanical properties of high-manganese austenitic TWIP-type steel, Materials Science Forum 783-786 (2014) 27-32.
  • [297] L.A. Dobrzański, W. Borek, Hot-rolling of advanced high-manganese C-Mn-Si-Al steels, Materials Science Forum 706-709 (2012) 2053-2058.
  • [298] L.A. Dobrzański, W. Borek, Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-AI Steels, Materials Science Forum 654-656 (2010) 266-269.
  • [299] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum 638-642 (2010) 3224-3229.
  • [300] L.A. Dobrzański, W. Borek, M. Czaja, J. Mazurkiewicz, Structure of X11MnSiAl17-1-3 steel after hot-rolling and Gleeble simulations, Archives of Materials Science and Engineering 61/1 (2013) 13-21.
  • [301] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of high-manganese steel during the thermomechanical processing, Archives of Materials Science and Engineering 37/2 (2009) 69-76.
  • [302] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, Influence of thermo-plastic deformation on grain size of high-manganese austenitic X11MnSiAl17-3-1 steel, Journal of Achievements in Materials and Manufacturing Engineering 61/2 (2013) 169-174.
  • [303] L.A. Dobrzański, W. Borek, Mechanical properties and microstructure of high-manganese TWIP, TRIP and TRIPLEX type steels, Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 230-238.
  • [304] L.A. Dobrzański, W. Borek, M. Ondrula, Thermomechanical processing and microstructure evolution of high-manganese austenitic TRIP-type steels, Journal of Achievements in Materials and Manufacturing Engineering 53/2 (2012) 59-66.
  • [305] L.A. Dobrzański, W Borek, Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 71-78.
  • [306] L.A. Dobrzański, W. Borek, Hot-working of advanced high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 507-526.
  • [307] L.A. Dobrzański, W. Borek, Microstructure forming processes of the 26Mn-3Si-3Al-Nb-Ti steel during hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 40/1 (2010) 25-32.
  • [308] L.A. Dobrzański, W. Borek, Processes forming the microstructure evolution of high-manganese austenitic steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 397-407.
  • [309] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 218-225.
  • [310] L.A. Dobrzański, A. Grajcar, W. Borek, Hotworking behaviour of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 7-14.
  • [311] L.A. Dobrzański, A. Grajcar, W. Borek, Influence of hot-working conditions on a structure of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 139-142.
  • [312] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Structure and Mechanical Properties of High-Manganese Steels, in: S. Hashmi (Ed.), Comprehensive Materials Processing, G.F. Batalha (Ed.), Vol. 2, Materials Modeling and Characterization, Elsevier Ltd., 2014, 199-218.
  • [313] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, M. Szindler, Structure and Properties of the Skeleton Microporous Materials with Coatings Inside the Pores for Medical and Dental Applications, in: M. Mumganant et al. (Eds.), Frontiers in Materials Processing, Applications, Research and Technology, Springer Nature Singapore Pte Ltd. 2018, 297-320, DOI: doi.org/10.1007/978-981-10-4819-7_26
  • [314] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, E. Hajduczek, G. Matula, Fabrication Technologies of the Sintered Materials Including Materials for Medical and Dental Application, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, lnTech, Rijeka, Croatia, 2017, 17-52, DOI: I 0.5772/65376.
  • [315] L.A. Dobrzański, State of knowledge about materials used in implantology and regenerative medicine, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, (Eds.), Metallic microporous and solid materials for medical and dental applications, Open Access Library VII (1) 2017, 117-120 (in Polish).
  • [316] L.A. Dobrzański, Introductory Chapter: Multi-Aspect Bibliographic Analysis of the Synergy of Technical, Biological and Medical Sciences Concerning Materials and Technologies Used for Medical and Dental Implantable Devices, in: L.A. Dobrzański (Ed.), Biomaterials in Regenerative Medicine, TnTech, Rijeka, 2018, 1-43, DOI: doi.org/10.5772/intechopen.73094.
  • [317] L.A. Dobrzański, The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry, Archives of Materials Science and Engineering 80/2 (2016) 64-85, DOI: 10.5604/18972764.1229638.
  • [318] L.A. Dobrzański, Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [319] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [320] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, M. Szindler, L.B. Dobrzański, A. Achtelik-Franczak, E. Hajduczek, Microporous Titanium-Based Materials Coated by Biocompatible Thin Films, in: L.A. Dobrzański (Ed.), Biomaterials in Regenerative Medicine, InTech, Rijeka, 2018, 65-109, DOI: 10.5772/intechopen.70491.
  • [321] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz A. Achtelik-Franczak, M. Szindler, Structure and properties of the skeleton microporous materials with coatings inside the pores for medical and dental applications, in: M. Muruganant et al. (Eds.), Frontiers in Materials Processing, Applications, Research and Technology. Springer Nature Singapore Pte Ltd; 2018. 297-320, DOI: 10.1007/978-981-10-4819-7 26
  • [322] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), MetalLic microporous and solid materials for medical and dental applications, Open Access Library Aanal VII (1) 2017, 1-580 (in Polish).
  • [323] L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies. Rijeka, InTech, 2017, 1-392.
  • [324] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, M. Szindler, T.G. Gaweł, Porous Selective Laser Melted Ti and Ti6Al4V Materials for Medical Applications, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, Rijeka, InTech, 2017, 161-181, DOI: doi.org/10.5772/65375.
  • [325] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gawel, A. Achtelik-Franczak, Selective laser sintering and melting of pristine titanium and titanium Ti6AI4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045.
  • [326] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T. Gaweł, L.B. Dobrzański, A. Achtelik-Franczak, Fabrication of scaffolds from Ti6Al4V powders using the computer aided laser method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070.
  • [327] M. Kremzer, L.A. Dobrzański, M. Dziekonska, M. Macek, Atomic layer deposition of Ti02 onto porous biomaterials, Archives of Materials Science and Engineering 75/2 (2015) 63-69.
  • [328] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Szindler, A. Achtelik-Franczak, W. Pakieła, Atomic layer deposition of TiO2 onto porous biomaterials, Archives of Materials Science and Engineering 75/1 (2015) 5-11.
  • [329] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Acbtelik-Franczak, L.B. Dobrzański, Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders, Archives of Materials Science and Engineering 73/2 (2015) 69-81.
  • [330] M. Król, M. Kujawa, L.A. Dobrzański, T. Tański, Influence of technological parameters on additive manufacturing steel parts in Selective Laser Sintering, Archives of Materials Science and Engineering 67/2 (2014) 84-92.
  • [331] M. Król, L.A. Dobrzański, L. Reimann, I. Czaja, Surface quality in selective laser melting of metal powders, Archives of Materials Science and Engineering 60/2 (2013) 87-92.
  • [332] L.A. Dobrzański, A. Achtelik-Franczak, M. Król, Computer aided design in Selective Laser Sintering (SLS) - application in medicine, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 66-75.
  • [333] P. Malara, L.B. Dobrzański, Computer-aided design and manufacturing of dental surgical guides based on cone beam computed tomography, Archives of Materials Science and Engineering 76/2 (2015) 140-149.
  • [334] L.B. Dobrzański, Mechanical Properties Comparison of Engineering Materials Produced by Additive and Subtractive Technologies for Dental Prosthetic Restoration Application in: L.A. Dobrzański (Ed.), Biomaterials in Regenerative Medicine, Rijeka, InTech, 2018, 111-140, DOI: 10.5772/66233).
  • [335] L.B. Dobrzański, The stomatognathic system, the basis of its anatomy, diseases and methods of their treatment, in: L.A. Dobrzański, AD. Dobrzańska-Danikiewicz (Eds.), Metallic microporous and solid materials for medical and dental applications, Open Access Library Annal VII (1) 2017, 121-185 (in Polish).
  • [336] L.B. Dobrzański, Comparison of incremental and cavity methods of manufacturing dental restorations of the stomatognathic system, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Metallic microporous and solid materials for medical and dental applications, Open Access Library Annal VII (1) 2017, 434-491) (in Polish).
  • [337] L.B. Dobrzański, P. Malara, Methodology of computer-aided design and manufacturing of dental restorations from solid engineering materials, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Metallic microporous and solid materials for medical and dental applications, Open Access Library Annal VII (1) 2017, 500-534 (in Polish).
  • [338] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, M. Szindler, A. Achtelik-Franczak, L.B. Dobrzański. Surface treatment of microporous materials produced by selective laser sintering to enhance the proliferation of living cells, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Metallic microporous and solid materials for medical and dental applications, Open Access Library Annal VII (1) 2017, 289-375 (in Polish).
  • [339] P. Malara, L.B. Dobrzański, Strategies for computeraided designing of surgical guides for dental implant procedures based on cone beam computed tomography, in: Computed Tomography: Advances in Research and Applications, Nova Science Publishers, New York, USA, 2017.
  • [340] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, The surface layers of living cells on the thin ALD coatings in pores of the titanium implant-scaffolds, prepared for printing.
  • [341] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, The new generation of the biological-engineering materials for applications in dental and medical implant-scaffolds, prepared for printing.
  • [342] L.A. Dobrzański, A. Hudecki, Polymer nanofibers produced by electrospinning applied in regenerative medicine, Open Access Library V/3 (2015) 1-168.
  • [343] L.A. Dobrzański, A. Hudecki, G. Chladek, W. Król, A. Mertas, Biodegradable and antimicrobial polycaprolactone nanofibers with and without silver precipitates, Archives of Materials Science and Engineering 76/1 (2015) 5-26.
  • [344] L.A. Dobrzański, A. Hudecki, G. Chladek, W. Król, A. Mertas, Surface properties and antimicrobial activity of composite nanofibers of polycaprolactone with silver precipitations, Archives of Materials Science and Engineering 70/2 (2014) 53-60.
  • [345] L.A. Dobrzański, A. Hudecki, Structure, geometrical characteristics and properties of biodegradable micro- and polycaprolactone nanofibers, Archives of Materials Science and Engineering 70/1 (2014) 5-13.
  • [346] L.A. Dobrzański, Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scatiolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [347] L.A. Dobrzański, B. Nieradka, M. Macek, W. Matysiak, Influence of the electrospinning parameters on the morphology of composite nanofibers, Archives of Materials Science and Engineering 69/1 (2014) 32-37.
  • [348] A. Hudecki, M. Pawlyta, L.A. Dobrzański G. Chladek, Micro and ceramic nanoparticles surface properties examination with gas adsorption method and microscopic transmiSSIOn, Journal of Achievements in Materials and Manufacturing Engineering 61/2 (2013) 257-262.
  • [349] L.A. Dobrzański, M Pawlyta, A. Hudecki, Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 550-565.
  • [350] United States National Nanotechnology Initiative, What is Nanotechnology?, http://www.nano.gov/nanotech-101/what/definition, Access in: 1.12.2015.
  • [351] Commission Recommendation of 18 October 2011 on the definition of nanomaterial (2011 /696/EU), Official Journal of the European Union, 20.10.2011, http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?url=CELEX:32011H0696&from=PL, Access in: 1.12.2015.
  • [352] R.E. Smalley, Written statement, U.S. Senate Committee on Commerce. Science, and Transportation, May 12 (1999), Retrieved January 23, 2004, from http://www.senate. gov/-commerce/hearings/hearin99.html.
  • [353] United States National Nanotechnology Initiative, Manufacturing at the Nanoscale, http://www.nano.gov/nanotech-101/what/manufacturing, Access in: 1.12.2015.
  • [354] United States National Nanotechnology Initiative, NNI Supplement to the President's 2015 Budget, http://www.nano.gov/node/1128, Access in: 1.12.2015.
  • [355] J. Gribbin, M. Gribbin, Richard Feynman: A Life in Science, Penguin Books, Dutton, 1997, 170.
  • [356] NNDB, Richard Feynman, Soylent Communications, 2014. http://www.nndb.com/people/584/ 000026506/, Access in: 3.12.2015.
  • [357] R.P. Feynman, There's Plenty of Room at the Bottom, Engineering and Science 23 (5) (1960) 22-36, http://resolver.caltech.edu/CaltechES:23.5.1960Bottom.
  • [358] E. Ruska, The Development of the Electron Microscope and of Electron Microscopy, Nobel Lecture, December 8, 1986, https://www.nobelprize.org/nobel_prizes/physics/laureates/1986/ruska-lecture.html, Access in: 1.07.2018.
  • [359] N. Taniguchi, On the Basic Concept of 'NanoTechnology', Proceedings of the International Conference on Production Engineering, Part II, Japan Society of Precision Engineering, Tokyo. 1974, 18-23.
  • [360] European Society for Precision Engineering and Nanotechnology. Lifetime Achievement Award, http://www.euspen.eu/Home/LifetimeAchievementAward.aspx, Access in: 2.12.2015.
  • [361] K.E. Drexler, Engines of Creation: The Coming Era of Nanotechnology with a foreword by Marvin Minsky, Anchor Pr., Doubleday, New York, 1986.
  • [362] K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley & Sons, Inc., New York, 1992.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7792fa18-57cb-4d87-9784-bee20f210601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.