PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An adaptive FLC-GAFOPI controller for WRSG based wind turbine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Adaptacyjny sterownik FLC-GAFOPI dla turbiny wiatrowej opartej na WRSG
Języki publikacji
EN
Abstrakty
EN
This paper deals with design of an adaptive fuzzy logic control-genetic algorithm fractional order-proportional and integral (AFLC-GAFOPI) for a wound rotor synchronous generator (WRSG), based on a variable speed wind energy conversion system (WECS), for improving its power output quality . The AFLC-GAFOPI represents a hybridization of two GAFOPI and AFLC controllers respectively. The first one is designed to upgrade the performance of the system . The second one is chosen to overcome the nonlinearity of the system. To demonstrate the efficiency of the AFLC-GAFOPI controller, a comparison with the GAFOPI controller was performed for different wind regimes. The outcomes clearly demonstrate that the designed controller outperforms the compared controller in terms of response, robustness and overshoot.
PL
W artykule zajęto się projektowaniem adaptacyjnego algorytmu sterowania rozmytego, opartego na systemie konwersji energii wiatru o zmiennej prędkości (WECS). jego jakość wyjściowa mocy. AFLC-GAFOPI reprezentuje hybrydyzację odpowiednio dwóch sterowników GAFOPI i AFLC. Pierwsza ma na celu podniesienie wydajności systemu. Drugi wybierany jest w celu przezwyciężenia nieliniowości systemu. Aby zademonstrować wydajność sterownika AFLC-GAFOPI, przeprowadzono porównanie ze sterownikiem GAFOPI dla różnych warunków wiatrowych. Wyniki jasno pokazują, że zaprojektowany sterownik przewyższa porównywany sterownik pod względem odpowiedzi, niezawodności i przeregulowania.
Rocznik
Strony
81--87
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • LSTE Laboratory, University Mustapha Stambouli of Mascara
  • LSTE Laboratory, University Mustapha Stambouli of Mascara
autor
  • School of Applied Sciences Tlemcen
Bibliografia
  • [1] Biqnchi, F., Batista, H., Mantz, R. "Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design", Springer- Verlag, London Limited; 2010.
  • [2] Belakehal, S., Benalla, H. and Bentounsi, A. " Power maximization control of small wind system using permanent magnet synchronous generator ". Revue des Energies Renouvelables, Vol. 12 N°2 307–319; 2009.
  • [3] Tahir, K., Belfedal, C., Alaoui, T., Champenois, G. "Power Control of Wind Turbine Based on Fuzzy Sliding-Mode Control" IJPEDS Vol. 5, No. 4, April 2015: 502–511.
  • [4] Gupta, A., Bhushan, H., Samuel, P. "Generator Topologies with Power Electronics Converters for a Wind Energy Conversion System", A Review.
  • [5] Kim, Y., Chung, Y., Moon, S. "Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds", Energies 2015, 8, 1406-1425.
  • [6] Zheng, W., Luo, Y., Chen, Y. and Wang, X. "A Simplified Fractional Order PID Controller’s Optimal Tuning: A Case Study on a PMSM Speed Servo" 23, 130 Entropy 2021.
  • [7] Axtell, M., Bise, E. M. "Fractional Calculus Applications in Control Systems", Proceedings of the IEEE Nat. Aerospace and Electronics Conf., N.Y, pp 563-566, 1990.
  • [8] Chen, Y., Petras, I., Xue, D. "Fractional order control- a tutorial", In Proceedings of the American Control Conference (ACC’09), 1397–1411,2009.
  • [9] Podlubny, I. "Fractional-order systems and PI D controllers". IEEE Trans. On Automatic Control, vol.44, no. 1 pp. 208-213, 1999.
  • [10] Chen, L., Chen, G., Li, P., Lopes, A., "Machado J, Xu S. Avariable-order fractional proportional-integral controller and its application to a permanent magnet synchronous motor", Volume 59, Issue 5, Pages 3247-3254, October 2020.
  • [11] Ying, H., William, S., James, J. "Fuzzy control theory: a nonlinear case", Automatica, 26(3) 513-520, (1990).
  • [12] Habibi, H., Yousefi koma, A., and Sharifian A. "power and velocity control of wind turbines by adaptive fuzzy controller during full load operation", Iranian Journal of Fuzzy Systems Vol. 13, No. 3, (2016) pp. 35-48.
  • [13] Yousaf, S., Mughees, A., Gufran khan, M., Ahmed amin, A., and Adnan, M. "A Comparative Analysis of Various Controller Techniques for Optimal Control of Smart Nano-Grid Using GA and PSO Algorithms", Digital Object Identifier 10.1109/ACCESS.2020.3038021.
  • [14] Dhaifallah, M., Kanagaraj, N., Nisar, K. "Fuzzy Fractional-Order PID Controller for Fractional Model of Pneumatic Pressure System", Hindawi Mathematical Problems in Engineering Volume 2018, Article ID 5478781, 9 pages.
  • [15] Khalfallah, T., Cheikh, B., Tayeb, A., Denai, M. and M’Hamed, D. "Robust and Efficient Control of Wind Generator Based on a Wound Field Synchronous Generator", Springer International Publishing AG 2018.
  • [16] Rekioua, D. "Wind Power Electric Systems", Modeling, Simulation and Control Springer-Verlag London, 2014.
  • [17] Xiong, L., Li, P., Ma, M.,Wang, Z., Wang, J. "Output powerquality enhancement of PMSG with fractional order sliding mode control", volume 115, February 2020, 105402.
  • [18] Mouni, E., Tnani. S., Champenois, G. " Comparative study of three modelling methods of synchronous generator", in Conference of the IEEE Industrial Electronics Society, Paris, France, 2006.
  • [19] Errami, Y., Maaroufi, M., Ouassaid, M. "Control Scheme and Maximum Power Point Tracking of Variable Speed Wind Farm Based on the PMSG for Utility Network Connection", IEEE, 31.00/12/2-4766-4673-1-978, 2012.
  • [20] Tahir, K., Belfedal, C., Alaoui, T., Dena¨I, M., Doumi, M. "A new sliding mode stategy for variable-speed wind turbine power maximization", Int Trans Electr Energ Syst.e2513, 2018.
  • [21] Wang, H., Zeng, G., Dai, Y., Bi, D., Sun, J. and Xie, X. "Design of a Fractional Order Frequency PID Controller for an Islanded Microgrid: A Multi-Objective Extremal Optimization Method", Energies 2017, 10, 1502.
  • [22] Monje, C., Chen, Y., Vinagre, B., Xue, D., Feliu, V. "Fractionalorder Systems and Controls Fundamentals and Applications" Springer, Verlag London Limited 2010.
  • [23] Wibowo, W., Jeong. S. "Genetic algorithm tuned PI controller on PMSM simplified vector control", J. Cent. South Univ, J. Cent. South Univ, 2013.
  • [24] Zheng, W., Pi, Y. "Study of the fractional order proportional integral controller for the permanent magnet synchronous motor based on the differential evolution algorithm", Volume 63,July 2016, Pages 387-393.
  • [25] Asri, A., Mihoub, Y., Hassaine, S., Logerais, P., Allaoui, T. "Intelligent maximum power tracking control of a PMSG wind energy conversion system", Asian J Control; 1–11, 2019.
  • [26] Mahersi, E., and Khedher, A. " Backstepping flux observer for nonlinear control of the direct-drive permanent magnet synchronous generator wind turbines", Wind Engineering, Vol. 40(6) 540–554, 2016.
  • [27] Mahersi, E., Kheder, A. "Adaptive backstepping Control applied to wind PMSG System", 978-1-4673-9768-1/16/31.00, IEEE 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77911430-182d-4c1c-8dca-5f963cbc28e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.