PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hemispherical Zirconium Liner for Advanced Shaped Charge with Enhanced Behind Armour Effect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Armour penetration is an essential outcome for shaped charges, especially when the behind-armour effect is considered. Hemispherical liners produce superior jet mass compared with those of traditional conical shape. In this paper two different materials have been studied as hemispherical shaped charge liners. The reference liner was hemispherical oxygen-free high-conductivity copper (OFHC); the other liner material was zirconium. These liners were experimentally tested against 4340 steel targets in shaped charges loaded with the same amount of Composition B explosive. Zirconium liners were found to offer superior performance with experimental penetration and crater diameter respectively 16% and 20% greater than OFHC. Ansys Autodyn hydrocode simulation results demonstrated that both liners produced superior jet masses exceeding 50% of the total liner mass. Moreover, zirconium had a jet tip velocity of 4869 m/s compared with 3886 m/s for OFHC. Additionally, zirconium had a superior average jet collapse to plastic deformation temperature ratio of 0.73 compared with 0.34 for OFHC. This is the first time the relation between the jet temperature during collapse and jet stretching has been reported.
Rocznik
Strony
293--321
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Technical Research Centre, Cairo, Egypt
  • Nanotechnology Research Centre, Military Technical College, Cairo, Egypt
Bibliografia
  • [1] Buc, S.M. Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications. Final Technical Report AD-A278 191, 1991.
  • [2] Bourne, B.; Cowan, K.G.; Curtis, J.P. Shaped Charge Warheads Containing Low Melt Energy Metal Liners. Proc. 19th Int. Symp. Ballistics, Interlaken, Switzerland, 2001, pp. 583-590.
  • [3] Elshenawy, T.; Li, Q.M. Breakup Time of Zirconium Shaped Charge Jet. Propellants Explos., Pyrotech. 2013, 38(5): 703-708.
  • [4] Elshenawy, T. Determination of the Velocity Difference between Jet Fragments for a Range of Copper Liners with Different Small Grain Sizes. Propellants Explos., Pyrotech. 2016, 41(1): 69-75.
  • [5] Reese, J.W.; Hetz, A. Coated Metal Particles to Enhance Oil Field Shaped Charge Performance. Patent US 7011027, 2006.
  • [6] Stinson, J.S.; Nelson, S.R.; Wittman, C.L. Method for Producing High Density Refractory Metal Warhead Liners from Single Phase Materials. Patent US 5523048, 1996.
  • [7] Walters, W.; Peregino, P.; Summers, R.; Leidel, D. A Study of Jets from Unsintered Powder Metal Lined Non Precision Small Caliber Shaped Charge. Army Research Laboratory Aberdeen Proving Ground, MD, Report ARL-TR-2391, 2001.
  • [8] Zhang, X.; Wu, C.; Huang, F. Penetration of Shaped Charge Jets with Tungsten-Copper and Copper Liners at the same Explosive-to-Liner Mass Ratio into Water. Shock Waves 2010, 20(3): 263-267.
  • [9] Glenn, L.A. Pressure Enhanced Penetration with Shaped Charge Perforators. Patent US 6223656, 2001.
  • [10] Whelan, A.J.; Furnisss, D.R.; Townsley, R.G. Experimental and Simulated (Analytical and Numerical) Elliptical-Form Shaped Charges. Proc. 20th Int. Symp. Ballistics, Orlando, Florida, 2002, pp. 446-453.
  • [11] Racah, E. Shaped Charge Jet Heating. Propellants Explos., Pyrotech. 1988, 13(6): 178-182.
  • [12] Schwartz, A.; Kumar, M.; Lassila, D. Analysis of Intergranular Impurity Concentration and the Effects on the Ductility of Copper-Shaped Charge Jets. Metall. Mater. Trans. A 2004, 35(9): 2567-2573.
  • [13] Nielsen, R.H.; Wilfing, G. Zirconium and Zirconium Compounds. In: Ullmann’s Encyclopedia of Industrial Chemistry, Willey VCH, 2012; ISBN 3-527-20102-5, pp. 753.
  • [14] Chick, M.C.; Learmonth, L.A. Determination of Shock Initiation and Detonation Characteristics of PE4 in Proof Test Geometries. Materials Research Labs, Ascot Vale, Australia, Report MRL-R-979, 1985.
  • [15] Pugh, E.M.; Eichelberger, R.J.; Rostoker, N. Theory of Jet Formation by Charges with Lined Conical Cavities. J. Appl. Phys. 1952, 23(5): 532-536.
  • [16] Cowler, M.S. Autodyn Theory Manual. Century Dynamics, CA, 1997.
  • [17] Elshenawy, T.; Li, Q.M. Influences of Target Strength and Confinement on the Penetration Depth of an Oil Well Perforator. Int. J. Impact Eng. 2013, 54: 130-137.
  • [18] Tarver, C.M.; Tao, W.C.; Lee, C.G. Sideways Plate Push Test for Detonating Solid Explosives. Propellants Explos., Pyrotech. 1996, 21(5): 238-246.
  • [19] Lan, I.F.; Hung, S.C.; Chen, C.Y.; Niu, Y.M.; Shiuan, J.H. An Improved Simple Method of Deducing JWL Parameters from Cylinder Expansion Test. Propellants Explos., Pyrotech. 1993, 18(1): 18-24.
  • [20] Elek, P.M.; Džingalaševič, V.V.; Jaramaz, S.S.; Mickovič, D.M. Determination of Detonation Products Equation of State From Cylinder Test: Analytical Model and Numerical Analysis. Therm. Sci. 2015, 19(1): 35-48.
  • [21] Kato, H.; Kaga, N.; Takizuka, M.; Hamashima, H.; Itoh, S. Research on the JWL Parameters of Several Kinds of Explosives. Materials Science Forum. Mater. Sci. Forum 2004, 465: 271-276.
  • [22] Hasenberg, D. Consequences of Coaxial Jet Penetration Performance and Shaped Charge Design Criteria. Naval Postgraduate School, Monterey, CA, Report NPSPH- 10-001, 2010.
  • [23] Hirsch, E. Scaling of the Shaped Charge Jet Break Up Time. Propellants Explos., Pyrotech. 2006, 31(3): 230-233.
  • [24] Held, M.; Kozhushko, A.A. Radial Crater Growing Process in Different Materials with Shaped Charge Jets. Propellants Explos., Pyrotech. 1999, 24(6): 339-342.
  • [25] Rosenberg, Z.; Dekel, E. A Critical Examination of the Modified Bernoulli Equation Using Two-Dimensional Simulations of Long Rod Penetrators. Int. J. Impact Eng. 1994, 15(5): 711-720.
  • [26] Elshenawy, T.; Elbeih, A.; Li, Q.M. Influence of Target Strength on the Penetration Depth of Shaped Charge Jets Into RHA Targets. Int. J. Mech. Sci. 2018, 136: 234-242.
  • [27] Agu, H.O.; Hameed, A.; Appleby-Thomas, G. Application of Shell Jetting Analysis to Determine the Location of the Virtual Origin in Shaped Charges. Int. J. Impact Eng. 2018, 122: 175-181.
  • [28] Held, M. Behind Armor Effects at Shaped Charge Attacks. Proc. 24th Int. Symp. Ballistics (ISB), New Orleans, LA, USA, 2008, pp. 1187-1198.
  • [29] Arabei, B.; Salibekov, S.; Levinskii, Y.V. On the Ignitability of Certain Powder Materials. Powder Metall. Met. Ceram. 1965, 3(3): 259-262.
  • [30] Aseltine, C.L. Analytical Predictions of the Effect of Warhead Asymmetries on Shaped Charge Jets. Army Ballistic Research Lab, Aberdeen Proving Ground MD, Report ARBRL-TR-02214, 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7790a2a1-d836-484c-8eab-2876ad86ff32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.