PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibility of Water Saving in Processing of Snack Pellets by the Application of Fresh Lucerne Sprouts: Selected Aspects and Nutritional Characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New types of extruded snack pellets of wheat-corn blend base and fresh lucerne sprouts were developed. The aim of the study was to examine the effect of fresh lucerne sprouts addition on the water consumption, processing efficiency and the specific mechanical energy during production of wheat-maize snack pellets. Additionally, the total phenolic content and antiradical activity, as well as the water absorption and water solubility indices in samples processed under variable processing conditions were tested. The extrusion-cooking of blends consisted of 10, 20 and 30% of lucerne sprouts was carried out using a single screw extruder at screw speeds of 60 and 100 rpm, and at moisture contents of 32, 34 and 36%. Replacement of wheat-corn flour blends by fresh lucerne sprouts at various levels (10, 20 and 30%) enabled to sufficiently reduce technological water which is needed in extrusion-cooking process of snacks pellets. The limitation of water was from 89 to 100% if fresh lucerne sprouts were used, depending on the recipe and dough moisture level tested. Total phenolic content and antioxidant activity increased significantly due to lucerne sprouts addition. Furthermore, higher water absorption and water solubility index were noted if increased initial moisture content was applied during the processing of snack pellets. It can be concluded that fresh lucerne sprouts can be valuable additives, enabling to save the technological water in production process and to obtain nutritionally valuable supplemented wheat-corn-based snack pellets.
Rocznik
Strony
130--142
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
autor
  • Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
  • Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
  • Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
  • Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
  • Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
Bibliografia
  • 1. Aloo S.O., Ofosu F.K., Kilonzi S.M., Shabbir U., Oh, D.H. 2021. Edible plant sprouts: Health benefits, trends, and opportunities for novel exploration, Nutrients, 13, 2882. DOI: 10.3390/nu13082882
  • 2. Panak Balentić J., Babić J., Jozinović A., Ačkar D., Miličević B., Muhamedbegović B., Šubarić D. 2018. Production of third-generation snacks. Croatian Journal of Food Science and Technology, 10, 98–105. DOI: 10.17508/CJFST.2018.10.1.04
  • 3. Burda S. Oleszek W. 2001. Antioxidant and antiradical activities of flavonoids, Journal of Agricultural and Food Chemistry, 49, 2774–2779. DOI: 10.1021/jf001413m
  • 4. Caunii A., Pribac G., Grozea I., Gaitin D. Samfira I. 2012. Design of optimal solvent for extraction of bio-active ingredients from six varieties of Medicago sativa. Chemistry Central Journal, 6(1), 123. DOI: 10.1186/1752–153X-6–123
  • 5. Chiriac E.R., Chitescu C.L., Borda D., Lupoae M., Gird C.E., Geana E.I., Blaga G.V. Boscencu R. 2020. Comparison of the polyphenolic profile of Medicago sativa L. and Trifolium pratense L. sprouts in different germination stages using the UHPLC-Q exactive hybrid quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules, 25, 2321. DOI: 10.3390/molecules25102321
  • 6. da Silva E.M.M., Ascheri J.L.R., de Carvalho C.W.P., Takeiti C.Y., de J. Berrios J.(2014. Physical characteristics of extrudates from corn flour and dehulled carioca bean flour blend. LWT-Food Science and Technology, 58, 620–626. DOI: 10.1016/j.lwt.2014.03.031
  • 7. Elmulthum N.A., Zeineldin F.I., Al-Khateeb S.A., Al-Barrak K.M., Mohammed T.A., Sattar M.N., Mohmand A.S. 2023. Water use efficiency and economic evaluation of the hydroponic versus conventional cultivation systems for green fodder production in Saudi Arabia. Sustainability, 15(1), 822. DOI: 10.3390/su15010822
  • 8. Francis H., Debs E., Koubaa M., Alrayess Z., Maroun R.G., Louka N. 2022. Sprouts use as functional foods. Optimization of germination of wheat (Triticum aestivum L.), alfalfa (Medicago sativa L.), and radish (Raphanus sativus L.) seeds based on their nutritional content evolution. Foods, 11, 1460. DOI: 10.3390/foods11101460
  • 9. Gaweł E., Grzelak M., Janyszek M. 2017. Lucerne (Medicago sativa L.) in the human diet – Case reports and short reports. Journal of Herbal Medicine, 10, 8–16. DOI: 10.1016/j.hermed.2017.07.002
  • 10. Hong Y.H., Wang S.C., Hsu C., Lin B.F., Kuo Y.H., Huang C.J. 2011. Phytoestrogenic compounds in alfalfa sprout (Medicago sativa) beyond coumestrol. Journal of Agricultural and Food Chemistry, 59, 131–137. DOI: 10.1021/jf102997p
  • 11. Kalinichenko A., Havrysh V. 2019. Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway. Archives of Environmental Protection, 45(1), 68–83. DOI: 10.24425/aep.2019.126423
  • 12. Kasprzak-Drozd K., Oniszczuk T., Kowalska I., Mołdoch J., Combrzyński M., Gancarz M., Dobrzański B., Jr., Kondracka A., Oniszczuk A. 2022. Effect of the production parameters and in vitro digestion on the content of polyphenolic compounds, phenolic acids, and antiradical properties of innovative snacks enriched with wild garlic (Allium ursinum L.) leaves. International Journal of Molecular Sciences, 23, 14458. DOI: 10.3390/ijms232214458
  • 13. Kasprzycka A., Lalak-Kańczugowska J., Tys J., Chmielewska M., Pawłowska M. 2018. Chemical stability and sanitary properties of pelletized organo-mineral waste-derived fertilizer. Archives of Environmental Protection, 44(3), 106–113. DOI: 10.24425/aep.2018.122284
  • 14. Krakowska-Sieprawska A., Rafińska K., Walczak-Skierska J., Kiełbasa A., Buszewski, B.2021. Promising green technology in obtaining functional plant preparations: Combined enzyme-assisted supercritical fluid extraction of flavonoids isolation from Medicago Sativa Leaves. Materials, 14, 2724. DOI: 10.3390/ma14112724
  • 15. Kraus S., Schuchmann H.P., Gaukel V. 2014. Factors influencing the microwave-induced expansion of starch-based extruded pellets under vacuum. Journal of Food Process Engineering, 37, 264–272. DOI: 10.1111/jfpe.12082
  • 16. Labhar A., Benamari O., El-Mernissi Y., Salhi A., Ahari M., El Barkany S., Amhamdi H. 2023. Phytochemical, Anti-Inflammatory and Antioxidant Activities of Pistacia lentiscus L. Leaves from Ajdir, Al Hoceima Province, Morocco. Ecological Engineering & Environmental Technology, 24(7), 172–177. DOI: 10.12912/27197050/169935
  • 17. Lai S.T., Cui Q.L., Zhang Y.Q., Zhang Y.L., Liu J.L., Sun D. 2020. In vitro antioxidant activity of alfalfa leaf powder and the processing of its chewable tablets. Modern Food Science and Technology, 36, 252–259. DOI: 10.13982/j.mfst.1673–9078.2020.4.033.
  • 18. Lisiecka K., Wójtowicz A. 2020. Possibility to save water and energy by application of fresh vegetables to produce supplemented potato-based snack pellets. Processes, 8, 153. DOI: 10.3390/pr8020153
  • 19. Lisiecka K., Wójtowicz A. 2019. The production efficiency and specific energy consumption during processing of corn extrudates with fresh vegetables addition. Agricultural Engineering, 23(2), 15–23. DOI: 10.1515/agriceng-2019–0012
  • 20. Lisiecka K., Wójtowicz A., Mitrus M., Oniszczuk T., Combrzyński M. 2021. New type of potato-based snack-pellets supplemented with fresh vegetables from the Allium genus and its selected properties. LWT-Food Science and Technology, 145, 111–233. DOI: 10.1016/j.lwt.2021.111233
  • 21. Lotfi Shirazi S., Koocheki A., Milani E., Mohebbi M. 2020. Production of high fiber ready-to-eat expanded snack from barley flour and carrot pomace using extrusion cooking technology. Journal of Food Science and Technology, 57, 2169–2181. DOI: 10.1007/s13197–020–04252–5
  • 22. Lourenço L.F.H., Tavares T.S., Araujo E.A.F., Eder A.F., Pena R.S., Rosinelson S., Peixoto Joele M.R.G., Carvalho A.V. 2016. Optimization of extrusion process to obtain shrimp snacks with rice grits and polished rice grains. CyTA: Journal of Food, 14(2), 340–348. DOI: 10.1080/19476337.2015.1114025
  • 23. Matysiak A., Wójtowicz A., Oniszczuk T. 2018. Process efficiency and energy consumption during extrusion of potato and multigrain formulations. Agricultural Engineering, 22(2), 49–57. DOI: 10.1515/agriceng-2018–0015
  • 24. Meng X., Threinen D., Hansen M., Driedger D. 2010. Effects of extrusion conditions on system parameters and physical properties of a chickpea flourbased snack. Food Research International, 43, 650–658. DOI: 10.1016/j.foodres.2009.07.016
  • 25. Nikmaram R., Rosentrater K.A. 2019. Overview of some recent advances in improving water and energy efficiencies in food processing factories. Frontiers in Nutrition, 6, 20. DOI: 10.3389/fnut.2019.00020
  • 26. Ölmez H. 2013. Minimizing water consumption in the fresh-cut processing industry. Stewart Postharvest Review, 9(3–5), 1–12. DOI: 10.2212/SPR.2013.1.5
  • 27. Prabha K., Ghosh P., Joseph R.M., Krishnan R., Rana S.S., Pradhan R.C. 2021. Recent development, challenges, and prospects of extrusion technology. Future Foods, 3, #100019. DOI: 10.1016/j.fufo.2021.100019
  • 28. Ruiz-Armenta X.A., Zazueta-Morales J.D.J., Delgado-Nieblas C.I., Carrillo-López A., Aguilar-Palazuelos E., Camacho-Hernández I.L. 2019. Effect of the extrusion process and expansion by microwave heating on physicochemical, phytochemical, and antioxidant properties during the production of indirectly expanded snack foods. Journal of Food Processing and Preservation, 43(12), 14261. DOI: 10.1111/jfpp.14261
  • 29. Sahni P., Sharma S., Singh B., Bobade H. 2022. Cereal bar functionalised with non-conventional alfalfa and dhaincha protein isolates: quality characteristics, nutritional composition and antioxidant activity. Journal of Food Science and Technology, 59, 3827–3835. DOI: 10.1007/s13197–022–05404–5
  • 30. Kalsum L., Rusdianasari R., Hasan A. 2022. The Effect of the Packing Flow Area and Biogas Flow Rate on Biogas Purification in Packed Bed Scrubber. Journal of Ecological Engineering, 23(11): 49–56. https://doi.org/10.12911/22998993/153569
  • 31. Shah M.S., Supriya D., Mayuri G., Oswal R.J.A. 2020. Systematic review on one of the nutraceutical potential plant Medicago sativa (alfalfa). World Journal of Pharmaceutical Research, 7, 683–700. DOI: 10.20959/wjpr20209–18453
  • 32. Soja J., Combrzyński M., Oniszczuk,T., Biernacka B., Wójtowicz A., Kupryaniuk K., Wojtunik-Kulesza K., Bąkowski M., Gancarz M., Mołdoch J., Szponar J., Oniszczuk A. 2023. The effect of fresh kale (Brassica oleracea var. sabellica) addition and processing conditions on selected biological, physical, and chemical properties of extruded snack pellets. Molecules, 28, 1835. DOI: 10.3390/molecules28041835
  • 33. Stachowski P., Rolbiecki S., Jagosz B., Krakowiak-Bal A., Rolbiecki R., Figas A., Gumus M., Atilgan A. 2023. Changes in Water Quality for Sprinkler Irrigation in Selected Lakes of the Poznan Lake District. Journal of Ecological Engineering, 24(11), 69–81.
  • 34. Zincă G., Vizireanu C. 2013. Impact of germination on phenolic compounds content and antioxidant activity of alfalfa seeds (Medicago sativa L.). Journal of Agroalimentary Processes and Technologies, 19, 105–110. DOI: 10.1016/j.foodchem.2009.09.030
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-778d3274-f580-4da6-87f4-834f9f92dfb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.