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A MATLAB-BASED SIMULATION OF POISSON 
PROCESS IN MASS TRANSPORTATION 

PROBLEMS 

Abstract 
The paper presents a method of solving mass transportation problems using Matlab. Matlab codes 

for simulation of the Poisson process sample paths were designed and applied in a probabilistic mass 
transportation problem FIFO. The simulated sample paths can be augmented with simulated paths of 
Brownian motion to numerically solve the problems driven by the Levy-type processes.   

INTRODUCTION 
A crucial role in queueing theory as well as in traffic generation models is being played by 

the Poisson process [9]. The wide variety of its applications includes routing and scheduling 
problems [2], queuing models of airport mass transit (cabs, busses) [1], modeling of traffic 
flows [10]. The more sophisticated models based on stochastic differential equations can 
require a generalization of the Poisson process, that is the Levy process [8, 9, 11]. A theorem 
on decomposition of the Levy process guarantees that the Levy process can be decomposed 
onto three elements: linear drift, Brownian motion and jump process (e. g. Poisson) [4]. This 
decomposition combined with numerical methods of discretization allows to analyze 
numerically solutions to the Levy-driven stochastic differential equations [11]. The simulation 
method is priceless in the cases when the analytical solution is difficult or even impossible. 
This work is a step forward the numerical solving of such equations. The stochastic 
differential equations driven by the Brownian motion has already been worked out [5,6]. The 
method is general and can be employed in various technical and financial problems [7].  

The Poisson process usually is defined as follows [3]: 
Definition 
A stochastic process N is called Poisson if the conditions are all satisfied: 

1. �� � 0 with probability 1, 
2. the increments of the process are independent, 
3. for any nonnegative s and positive t the increment ���� � �� has the Poisson 

distribution with parameter 	
, 	 � 0, that is 

����� � �� � �� � �	
��
�! ����, 

for � � 0, 1, 2, …, 
4. the trajectories of the process are nondecreasing, left-continuous step functions 

with jumps equal to 1. 
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By the definition it can easily be shown (see [9], [11]) that the random variables ��, ��, … 
denoting the waiting time for the consecutive jumps are independent and have the exponential 
distribution with parameter λ, that is, the density of �� is of the form: 

���� � �0, � � 0
	��� , � ! 0.# 

The expectation of the distribution can be evaluated using by parts integration 

$ �����%� � $ 	���� %� � 1
	 .

&

�

�&

�&
 

These properties will be used in Matlab simulations. 
 

1. MATLAB SIMULATION OF SAMPLE PATHS 
The first simulation of the Poisson process trajectory consisting of fixed number of stairs 

will be performed in a loop containing two steps, after setting the parameter n – the number of 
stairs [7,9,12]: 
– generation of n random variables �� according to the exponential distribution, using the 

built-in random number generator, 
– assigning a proper constant value (consecutive natural numbers starting from 0) over the 

interval �����, ��'.  
The following code in Matlab generates and plots a single trajectory of the Poisson 

process with given λ=1, number of stairs n=10. 
  
Procedure 1 

n=10 
T=exprnd(1,n,1) 
M=sum(T); 
t=0:0.01:M; 
st=0; 
f=ones(size(t)); 
it=t<=T(1); 
f(it)=0; 
for j= 1:(n-1) 
    st=st+T(j); 
    it=st<t&t<=st+T(j+1); 
    f(it)=j; 
end 
stairs(t, f) 
 
The result of the procedure is shown in Fig. 1. 
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Fig 1. Two simulated trajectories of the Poisson process, given the number of stairs. 

The code presented above can be used when the number of impulses is fixed, given at the 
beginning of the experiment. On the other hand, it is often necessary to observe the trajectory 
over a fixed interval – in this case the number of steps is usually unknown. Therefore, the 
approach must be slightly changed. Fix the interval [0,T]. The following steps will now be 
followed [7,9,12]: 
– generation of random variables �� according to the exponential distribution, using the built-

in random number generator, until their sum exceeds the specified T, 
– assigning a proper constant value (consecutive natural numbers starting from 0) over the 

interval �����, ��'.  
The following code in Matlab generates and plots a single trajectory of the Poisson 

process with given λ=1, over the specified interval [0,5]. 
 

Procedure 2 
T0=5; 
T(1)=0; 
i=1; 
  
while sum(T)<=T0 
T(i)=exprnd(1,1,1); 
i=i+1; 
end 
t=0:0.01:sum(T); 
st=0; 
n=i-1; 
f=ones(size(t)); 
it=t<=T(1); 
f(it)=0; 
for j= 1:(n-1) 
    st=st+T(j); 
    it=st<t&t<=st+T(j+1); 
    f(it)=j; 
end 
stairs(t, f); 
axis([0 T0 0 n]) 
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Fig.2. Two simulated trajectories of the Poisson process, given the interval [0,5]. 

Note that the sample paths presented in Fig. 2 consist of various number of steps: the first 
one 7 and the other 5. 

2. APPLICATION IN MASS SERVICE PROBLEM 
Consider the following problem, following the usual first in-first out (FIFO) scheme, 

inspired by [1],  formulated and solved analytically in [11]: 
A group taxis are waiting for passengers at the railway station. Passengers for those taxis 

arrive according to a Poisson process with an average of 20 passengers per hour. A taxi 
departs as soon as four passengers have been collected or ten minutes have expired since the 
first passenger got in the taxi. What is the probability that the first passenger has to wait ten 
minutes until the departure of the taxi? 

As mentioned before the problem can be solved analytically: 

���� � 3� � )���� � �� � )����* +103 ,
�

�! - 0.35.
/

�0�

/

�0�
 

 That is why this problem was selected to illustrate the numerical approach using the 
Matlab simulation. 

First, we take minute, as the unit of time. This implies the intensity of the process is equal 
to 	 � 1/3, hence the Matlab parameter mu (the expectation), of the exponential distribution 
equals 3.  We shall employ Procedure 2 in a loop to simulate a specified, large number of 
sample paths.  

 
Procedure 3 

T0=10; 
counter=0; 
for p=1:100 
    T=zeros; 
    i=1; 
    while sum(T)<=T0 
        T(i)=exprnd(3,1,1); 
        i=i+1; 
    end 
    t=0:0.01:sum(T); 
    st=0; 
    n=i-1; 
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    f=ones(size(t)); 
    it=t<=T(1); 
    f(it)=0; 
    for j= 1:(n-1) 
        st=st+T(j); 
        it=st<t&t<=st+T(j+1); 
        f(it)=j;  
    end 
     
    if f(size(t))<3 counter=counter+1; end; 
end 
counter 
 

As the unbiased estimator of the derived probability one can take the maximum likelihood 
estimator equal to:  

2̂ � 4�
4 , 

where n denotes the sample size and n0 is the number of the conducive elements in the 
sample.  

After simulation 100 sample paths it turned out that the variable counter (n0) was equal to 
34. This denotes that 34 trajectories (out of 100) took value smaller than 3 at their terminal 
points. In terms of the example it means that in 34 (out of 100) cases one has to wait 10 
minutes for the departure. Therefore, the probability is the specified event equals 0.34. The 
analytical solution is 0.35. One can conclude that the numerical result is very good.  

CONCLUSIONS 

Matlab package is a good tool in Monte Carlo simulations. In particular it can be easily 
employed in mass transportation and queueing problems. In the paper two Matlab codes for 
simulation of the Poisson sample paths were designed. One of this procedures was then run in 
a loop to assess numerically the probability of the specified waiting time in a FIFO problem. 
The numerical result was then compared with the one obtained analytically. It was concluded 
that the numerical result was highly satisfactory. 
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SYMULACJE PROCESU POISSONA Z UśYCIEM 
PAKIETU MATLAB W ZASTOSOWANIACH 

ZWI ĄZANYCH Z MASOW Ą OBSŁUGĄ 

Streszczenie 
W artykule przedstawiono metodę rozwiązywania problemów z dziedziny teorii obsługi, opartą na 

symulacjach z uŜyciem pakietu Matlab. Przedstawiono procedury numeryczne słuŜące do 
symulowania ścieŜek procesu Poissona. Jedną z zaprezentowanych procedur zastosowano w 
szacowaniu prawdopodobieństwa oczekiwania w modelu FIFO. 

Opracowane procedury moŜna zsumować z symulacjami procesu Wienera otrzymując 
dyskretyzację bardziej wyrafinowanego procesu Levy’ego. Oznacza to moŜliwość rozwiązywania np. 
stochastycznych równań róŜniczkowych, w których komponenta stochastyczna jest właśnie procesem 
Levy’ego.  
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