Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Slow axisymmetric flow of an incompressible viscous fluid caused by a slip sphere within a non-concentric spherical cell surface is investigated. The uniform velocity (Cunningham’s model) and tangential velocity reaches minimum along a radial direction are imposed conditions at the cell surface (Kvashnin’s model). The general solution of the problem is combined using superposition of the fundamental solution in the two spherical coordinate systems based on the centers of the slip sphere and spherical cell surface. Numerical results for the correction factor on the inner sphere are obtained with good convergence for various values of the relative distance between the centers of the sphere and spherical cell, the slip coefficient, and the volume fraction. The obtained results are in good agreement with the published results. The effect of concentration is more in the Cunningham’s model compared to the Kvashnin’s model. The wall correction factor on the no-slip sphere is more compared to that of a slip sphere. The correction factor on the slip sphere is more than that of a spherical gas bubble.
Rocznik
Tom
Strony
59--70
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, National Institute of Technology, Raipur-492010 Chhatisgarh, India
Bibliografia
- [1] Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., & Craig, V.S.J. (2005). Boundary slip in Newtonian liquids: a review of experimental studies. Reports on Progress in Physics, 68, 2859-2897.
- [2] Ramkissoon, H., & Rahaman, K. (2003). Wall effects with slip. Journal of Applied Mathematics and Mechanics, 83(11), 773-778.
- [3] Zholkovskiy, E.K., Shilov, V.N., Masliyah, J.H., & Bondarenko, M.P. (2007). Hydrodynamic cell model: General formulation and comparative analysis of different approaches. The Canadian Journal of Chemical Engineering, 85, 701-725.
- [4] Sherief, H.H., Faltas, M.S., Ashmawy, E.A., & Nashwan, M.G. (2015). Stokes flow of a micropolar fluid past an assemblage of spheroidal particle-in-cell models with slip. Physica Scripta, 90(5), 055203.
- [5] Srinivasacharya, D., & Krishna Prasad, M. (2012). Creeping motion of a porous approximate sphere with an impermeable core in a spherical container. European Journal of Mechanics B/Fluids, 36, 104-114.
- [6] Saad, E. (2012). Stokes flow past an assemblage of axisymmetric porous spheroidal particle-in-cell models. Journal of Porous Media, 15(9), 849-866.
- [7] Gluckman, M.J., Pfeffer, R., & Weinbaum, S. (1971). A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids. Journal of Fluid Mechanics, 50, 705-740.
- [8] Leichtberg, S., Pfeffer, R., & Weinbaum, S. (1976). Stokes flow past finite coaxial clusters of spheres in a circular cylinder. International Journal of Multiphase Flow, 3, 147-169.
- [9] Ganatos, P., Weinbaum, S., & Pfeffer, R. (1980). A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. Journal of Fluid Mechanics, 99, 739-753.
- [10] Ganatos, P., Weinbaum, S., & Pfeffer, R. (1980). A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. Journal of Fluid Mechanics, 99, 755-783.
- [11] Keh, H.J., & Lee, T.C. (2010). Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity. Theoretical and Computational Fluid Dynamics, 24, 497-510.
- [12] Faltas, M.S., & Saad, E.I. (2011). Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Mathematical Methods in the Applied Sciences, 34, 1594-1605.
- [13] Saad, E. (2012). Cell models for micropolar flow past a viscous fluid sphere. Meccanica, 47, 2055-2068.
- [14] Faltas, M.S., & Saad, E.I. (2012). Slow motion of a porous eccentric spherical particle-in-cell models. Transport in Porous Media, 95, 133-150.
- [15] Lee, T.C., & Keh, H.J. (2013). Slow motion of a spherical particle in a spherical cavity with slip surfaces. International Journal of Engineering Science, 69, 1-15.
- [16] Saad, E.I. (2014). Motion of a slip sphere in a nonconcentric fictitious spherical envelope of micropolar fluid. ANZIAM Journal, 55, 383-401.
- [17] Saad, E.I. (2019). Viscous flow past a porous sphere within a nonconcentric fictitious spherical cell. Microsystem Technologies, 25, 1051-1063.
- [18] Sherief, H.H., Faltas, M.S., El-Sapa, S. (2019). Axisymmetric creeping motion caused by a spherical particle in a micropolar fluid within a nonconcentric spherical cavity. European Journal of Mechanics-B Fluids, 77, 211-220.
- [19] Krishna Prasad, M. (2019). Cell models for Non-Newtonian fluid past a semipermeable sphere. International Journal of Mathematical, Engineering and Mangement Sciences, 4(6), 1352-1361.
- [20] Tseng, Y.M., & Keh, H.J. (2020). Thermophoretic motion of an aerosol sphere in a spherical cavity. European Journal of Mechanics/B Fluids, 81, 93-104.
- [21] Alouges, F., Lepot, A.L., & Sellier, A. (2020). Motion of a solid particle in a bounded viscous flow using the Sparse Cardinal Sine Decomposition. Meccanica, 55, 403-419.
- [22] Cunningham, E. (1910). On the velocity of steady fall of spherical particles through fluid medium. Proceedings of the Royal Society of London, A 83, 357-365.
- [23] Mehta, G.D., & Morse, T.F. (1975). Flow through charged membranes. Journal of Chemical Physics, 63, 1878-1889.
- [24] Kvashnin, A.G. (1979). Cell model of suspension of spherical particles. Fluid Dynamics, 14, 598-602.
- [25] Happel, J., & Brenner, H. (1965). Low Reynolds Number Hydrodynamics. Englewood Cliffs, N.J.: Prentice-Hall.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-778844a9-7b43-49e0-83cb-c5984791bb2c