Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In our previous paper, a simple gradient-enhancement of the classical continuum theory of plasticity of single crystals deformed by multislip has been proposed for incorporating size effects. A single internal length scale has been derived as an explicit function of the flow stress defined as the isotropic part of critical resolved shear stresses. The present work is focused on verification whether the simplifications involved are not too severe and allow satisfactory predictions of size effects. The model has been implemented in a finite element code and applied to three-dimensional simulations of fcc single crystals. We have found that the experimentally observed indentation size effect in a Cu single crystal is captured correctly in spite of the absence of any adjustable length-scale parameter. The finite element treatment relies on introducing non-local slip rates that average and smoothen on an element scale the corresponding local quantities. Convergence of the finite element solution to the analytical one is also verified for the one-dimensional problem of a boundary layer formed at a constrained interface.
Czasopismo
Rocznik
Tom
Strony
487--513
Opis fizyczny
Bibliogr. 30 poz., rys. kolor.
Twórcy
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B 02-106 Warsaw, Poland
Bibliografia
- 1. H. Petryk, S. Stupkiewicz, A minimal gradient-enhancement of the classical continuum theory of crystal plasticity. Part I: The hardening law, Arch. Mech. 68 (2016), 459–485.
- 2. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids 46 (1998), 411–425.
- 3. P. Cermelli, M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids 49 (2001), 1539–1568.
- 4. J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (1953), 153–162.
- 5. E.P. Busso, F.T. Meissonnier, N.P. O’Dowd, Gradient-dependent deformation of two-phase single crystals, J. Mech. Phys. Solids 48 (2000), 2333–2361.
- 6. L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects, J. Mech. Phys. Solids 52 (2004), 2379–2401.
- 7. M. Ekh, M. Grymer, K. Runesson, T. Svedberg, Gradient crystal plasticity as part of the computational modelling of polycrystals, Int. J. Num. Meth. Engng. 72 (2007), 197–220.
- 8. S. Bargmann, B.D. Reddy, B. Klusemann, A computational study of a model of single-crystal strain-gradient viscoplasticity with an interactive hardening relation, Int. J. Sol. Struct. 51 (2014), 2754–2764.
- 9. S. Wulfinghoff, T. Boehlke, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics, Proc. R. Soc. A 468 (2012), 2682–2703.
- 10. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, Gradient enhanced damage for quasi-brittle materials, Int. J. Num. Meth. Engng. 39 (1996), 3391–3403.
- 11. M.G.D. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework, Comp. Meth. Appl. Mech. Engng. 193 (2004), 3377–3401.
- 12. M. Arminjon, A regular form of the Schmid law. Application to the ambiguity problem, Textures and Microstructures 14–18 (1991), 1121–1128.
- 13. W. Gambin, Refined analysis of elastic-plastic crystals, Int. J. Sol. Struct. 29 (1992), 2013–2021.
- 14. J. Mandel, Plasticité classique et viscoplasticité, CISM course No. 97, Springer, Wien, 1971.
- 15. J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials , Proc. R. Soc. Lond. A 348 (1976), 101–127.
- 16. D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta Metall. 31 (1983), 1951–1976.
- 17. C. Miehe, Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals, Int. J. Num. Meth. Engng. 39 (1996), 3367–3390.
- 18. P. Steinmann, E. Stein, On the numerical treatment and analysis of finite deformation ductile single crystal plasticity, Comp. Meth. Appl. Mech. Engng. 129 (1996), 235–254.
- 19. J. Korelc, Multi-language and multi-environment generation of nonlinear finite element codes, Engineering with Computers 18 (2002), 312–327.
- 20. C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity—II. Analysis, J. Mech. Phys. Solids 53 (2005), 1204–1222.
- 21. J.Y. Shu, N.A. Fleck, E. Van der Giessen, A. Needleman, Boundary layers in constrained plastic flow: comparison of nonlocal and discrete dislocation plasticity, J.Mech. Phys. Solids 49 (2001), 1361–1395.
- 22. E. Bittencourt, A. Needleman, M.E. Gurtin, E. Van der Giessen, A comparison of nonlocal continuum and discrete dislocation plasticity predictions, J. Mech. Phys. Solids 51 (2003), 281–310.
- 23. S. Kucharski, S. Stupkiewicz, H. Petryk, Surface pile-up patterns in indentation testing of Cu single crystals, Exp. Mech. 54 (2014), 957–969.
- 24. M. Sauzay, L.P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals, Progress Mater. Sci. 56 (2011), 725–784.
- 25. E.A. de Souza Neto, D. Perić, M. Dutko, D.R.J. Owen, Design of simple low order finite elements for large strain analysis of nearly incompressible solids, Int. J. Sol. Struct. 33 (1996), 3277–3296.
- 26. P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods, Comp. Meth. Appl. Mech. Engng. 92 (1991), 353–375.
- 27. J. Lengiewicz, J. Korelc, S. Stupkiewicz, Automation of finite element formulations for large deformation contact problems, Int. J. Num. Meth. Engng. 85 (2011), 1252–1279.
- 28. K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13 (1998), 1300–1306.
- 29. Y.Y. Lim, M.M. Chaudhri, The effect of the indenter load on the nanohardness of ductile metals: an experimental study on polycrystalline work-hardeded and annealed oxygenfree copper, Phil. Mag. A 79 (1999), 2979–3000.
- 30. G.M. Pharr, E.G. Herbert, Y. Gao, The indentation size effect: A critical examination of experimental observations and mechanistic interpretations, Annu. Rev. Mater. Res. 40 (2010), 271–292.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7784b4d5-5d82-44e7-b817-c2c2a49ae60b