Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To investigate the performance of an irreversible direct ammonia-fed solid oxide fuel cell, the direct ammonia-fed solid oxide fuel cell based on oxygen ion conductivity was modeled using finite time thermodynamic theory. First, mathematical expressions for the output power, output efficiency, ecological objective function and ecological coefficient of performance of the direct ammonia-fed solid oxide fuel cell were derived. Further, the effects of parameters such as operating temperature, operating pressure, fuel utilization, and electrolyte thickness on the performance of direct ammonia-fed solid oxide fuel cell were numerically investigated. The results show that as the operating temperature of direct ammonia-fed solid oxide fuel cell increases, the performance of direct ammonia-fed solid oxide fuel cell including output power, output efficiency, ecological objective function and ecological coefficient of performance will be improved. Under certain conditions, increasing fuel utilization can improve output power, output efficiency and ecological performance. Increasing the electrolyte thickness will decrease the finite time thermodynamic performance of direct ammonia-fed solid oxide fuel cell. Moreover, the microstructure of the electrode also affects the performance of direct ammonia-fed solid oxide fuel cell, and the ecological objective function is increased by 16.9% when the electrode porosity is increased from 0.4 to 0.8.
Czasopismo
Rocznik
Tom
Strony
279--290
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, China
autor
- School of Mechanical and Automobile Engineering, Jinken College of Technology, Nanjing, 211156, China
autor
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, China
autor
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, China
autor
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, China
Bibliografia
- [1] Glenk, G., & Reichelstein, S. (2019). Economics of converting renewable power to hydrogen. Nature Energy, 4(3), 216–222. doi:10.1038/s41560-019-0326-1
- [2] Comello, S., Reichelstein, S., & Sahoo, A. (2018). The road ahead for solar PV power. Renewable and Sustainable Energy Reviews, 92, 744–756. doi: 10.1016/j.rser.2018.04.098
- [3] Nguyen, T., Sakamoto, M., Uchida, T., Doan, D., Dang, M., Tu, P., Sasaki, K., & Shiratori, Y. (2019). Development of paperstructured catalyst for application to direct internal reforming solid oxide fuel cell fueled by biogas. International Journal of Hydrogen Energy, 44(21), 10484–10497. doi: 10.1016/j.ijhydene.2019.02.134
- [4] Zhao, Y., Setzler, B.P., Wang, J., Nash, J., Wang, T., Xu, B., & Yan, Y. (2019). An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule, 3(10), 2472–2484. doi:10.1016/j.joule.2019.07.005
- [5] Zamfirescu, C., & Dincer, I. (2008). Using ammonia as a sustainable fuel. Journal of Power Sources, 185(1), 459–465. doi:10.1016/j.jpowsour.2008.02.097
- [6] Fuerte, A., Valenzuela, R.X., Escudero, M. ., & Daza, L. (2009). Ammonia as efficient fuel for SOFC. Journal of Power Sources,192(1), 170–174. doi: 10.1016/j.jpowsour.2008.11.037
- [7] Zamfirescu, C., & Dincer, I. (2009). Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Processing Technology, 90(5), 729–737. doi: 10.1016/j.fuproc.2009.02.004
- [8] Siddiqui, O., & Dincer, I. (2018). A review and comparative assessment of direct ammonia fuel cells. Thermal Science and Engineering Progress, 5, 568–578. doi: 10.1016/j.tsep.2018.02.011
- [9] Rathore, S.S., Biswas, S., Fini, D., Kulkarni, A.P., & Giddey, S. (2021). Direct ammonia solid-oxide fuel cells: A review of progress and prospects. International Journal of Hydrogen Energy, 46(71), 35365–35384. doi: 10.1016/j.ijhydene.2021.08.092
- [10] Sonker, M., Tiwary, S.K., Shreyash, N., Bajpai, S., Ray, M., Kar, S.K., & Balathanigaimani, M. (2022). Ammonia as an alternative fuel for vehicular applications: Paving the way for adsorbed ammonia and direct ammonia fuel cells. Journal of Cleaner Production, 376, 133960. doi: 10.1016/j.jclepro.2022.133960
- [11] Ma, Q., Peng, R., Tian, L., & Meng, G. (2006). Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 8(11), 1791–1795. doi:10.1016/j.elecom.2006.08.012
- [12] Ni, M., Leung, D.Y., & Leung, M.K. (2008). Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. Journal of Power Sources, 183(2), 682–686. doi:10.1016/j.jpowsour.2008.05.022
- [13] Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W.I., & Bowen, P. (2018). Ammonia for power. Progress in Energy and Combustion Science, 69, 63–102. doi: 10.1016/j.pecs.2018.07.001
- [14] Pelletier, L., McFarlan, A., & Maffei, N. (2005). Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes. Journal of Power Sources, 145(2), 262–265. doi: 10.1016/j.jpowsour.2005.02.040
- [15] Fini, D., Badwal, S.P., Giddey, S., Kulkarni, A.P., & Bhattacharya, S. (2018). Evaluation of Sc2O3–CeO2–ZrO2 electrolytebased tubular fuel cells using activated charcoal and hydrogen fuels. Electrochimica Acta, 259, 143–150. doi: 10.1016/j.electacta.2017.10.140
- [16] Maffei, N., Pelletier, L., Charland, J.P., & McFarlan, A. (2005). An intermediate temperature direct ammonia fuel cell using a proton conducting electrolyte. Journal of Power Sources,140(2), 264–267. doi: 10.1016/j.jpowsour.2004.08.020
- [17] Ni, M., Leung, D.Y., & Leung, M.K. (2008). Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes. International Journal of Hydrogen Energy, 33(20), 5765−5772. doi: 10.1016/j.ijhydene.2008.07.021
- [18] Rashid, N.L.R.M., Samat, A.A., Jais, A.A., Somalu, M.R., Muchtar, A., Baharuddin, N.A., & Isahak, W.N.R.W. (2019). Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell. Ceramics International, 45(6), 6605–6615.doi: 10.1016/j.ceramint.2019.01.045
- [19] Kaur, P., & Singh, K. (2020). Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International, 46(5), 5521–5535. doi: 10.1016/j.ceramint.2019.11.066
- [20] Jiang, S.P., & Chan, S.H. (2004). A review of anode materials development in solid oxide fuel cells. Journal of Materials Science, 39, 4405–4439. doi: 10.1023/B:JMSC.0000034135.52164.6b
- [21] Li, Z., Liu, R., Wang, J., Xu, Z., Xie, Y., & Wang, B. (2007). Preparation of double-doped BaCeO3 and its application in the reparation of double-doped BaCeO3 and its application in the synthesis of ammonia at atmospheric pressure. Science and Technology of Advanced Materials, 8(7−8), 566. doi: 10.1016/j.stam.2007.08.009
- [22] Yin, S., Xu, B., Zhou, X., & Au, C. (2004). A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Applied Catalysis A: General, 277(1−2), 1–9. doi: 10.1016/j.apcata.2004.09.020
- [23] Lai, H.Y., Li, Y.T., & Chan, Y.H. (2021). Efficiency enhancement on hybrid power system composed of irreversible solid oxide fuel cell and Stirling engine by finite time thermodynamics. Energies, 14(4), 1037. doi: 10.3390/en14041037
- [24] Li, D., Ma, Z., Shao, W., Li, Y., & Guo, X. (2022). Finite Time Thermodynamic Modeling and Performance Analysis of HighTemperature Proton Exchange Membrane Fuel Cells. International Journal of Molecular Sciences, 23(16), 9157. doi: 10.3390/ijms23169157
- [25] Ge, Y., Wu, H., Chen, L., Feng, H., & Xie, Z. (2023). Finite time and finite speed thermodynamic optimization for an irreversible Atkinson cycle. Energy, 270, 126856. doi: 10.1016/j.energy.2023.126856
- [26] Sieniutycz, S., & Poświata, A. (2012). Thermodynamic aspects of power production in thermal, chemical and electrochemical systems. Energy, 45(1), 62–70. doi: 10.1016/j.energy.2011.12.040
- [27] Ye, L., Jiao, K., Du, Q., & Yin, Y. (2015). Exergy analysis of high-temperature proton exchange membrane fuel cell systems. International Journal of Green Energy, 12(9), 917–929. doi:10.1080/15435075.2014.892004
- [28] Ishak, F., Dincer, I., & Zamfirescu, C. (2012). Energy and exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle. Journal of Power Sources, 212, 73–85. doi: 10.1016/j.jpowsour.2012.03.083
- [29] You, H., Han, J., Liu, Y., Chen, C., & Ge, Y. (2020). 4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator. Energy, 206, 118122. doi: 10.1016/j.energy.2020.118122
- [30] Xu, B., Li, D., Ma, Z., Zheng, M., & Li, Y. (2021). Thermodynamic optimization of a high temperature proton exchange membrane fuel cell for fuel cell vehicle applications. Mathematics, 9(15), 1792. doi:10.3390/math9151792
- [31] Ni, M., Leung, D.Y., & Leung, M.K. (2009). Electrochemical modeling and parametric study of methane fed solid oxide fuel cells. Energy Conversion and Management, 50(2), 268–278. doi: 10.1016/j.enconman.2008.09.028
- [32] Chan, S., Low, C., & Ding, O. (2002). Energy and exergy analysis of simple solid-oxide fuel-cell power systems. Journal of Power Sources, 103(2), 188–200. doi: 10.1016/S0378-7753(01)00842-4
- [33] Tanim, T., Bayless, D.J., & Trembly, J.P. (2014). Modeling a 5 kWe planar solid oxide fuel cell based system operating on JP-8 fuel and a comparison with tubular cell based system for auxiliary and mobile power applications. Journal of Power Sources, 245,986–997. doi: 10.1016/j.jpowsour.2013.07.008
- [34] Ni, M., Leung, D.Y., & Leung, M.K. (2008). An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate temperatures. Journal of Power Sources, 185(1), 233–240. doi: 10.1016/j.jpowsour.2008.07.023
- [35] Afif, A., Radenahmad, N., Cheok, Q., Shams, S., Kim, J.H., & Azad, A.K. (2016). Ammonia-fed fuel cells: A comprehensive review. Renewable and Sustainable Energy Reviews, 60, 822−835. doi: 10.1016/j.rser.2016.01.120
- [36] Angulo‐Brown, F. (1991). An ecological optimization criterion for finite‐time heat engines. Journal of Applied Physics, 69(11),7465–7469. doi: 10.1063/1.347562
- [37] Chen, L.G., Sun, F.R., & Chen, W.Z. (1994). On the ecological figures of merit for thermodynamic cycles. Journal Engineering for Thermal Energy and Power, 9(6), 374–376 (in Chinese).
- [38] Zijun, Y. (1993). Comment on “An ecological optimization criterion for finite-time heat engines” [J. Appl. Phys. 69, 7465 (1991)]. Journal of Applied Physics, 73(7), 3583. doi: 10.1063/1.354041
- [39] Chen, L., Xiaoqin, Z., Sun, F., & Wu, C. (2004). Ecological optimization for generalized irreversible Carnot refrigerators. Journal of Physics D: Applied Physics, 38(1), 113. doi: 10.1016/S0306-2619(03)00138-7
- [40] Ust, Y., Sahin, B., & Sogut, O.S. (2005). Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion. Applied Energy, 82(1), 23–39. doi: 10.1016/j.apenergy.2004.08.005
- [41] Minh, N.Q. (1993). Ceramic fuel cells. Journal of the American Ceramic Society, 76(3), 563–588. doi: 10.1111/j.1151-2916.1993.tb03645.x
- [42] Ma, Q., Ma, J., Zhou, S., Yan, R., Gao, J., & Meng, G. (2007). A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. Journal of Power Sources, 164(1), 86–89.doi: 10.1016/j.jpowsour.2006.09.093
- [43] Chen, F., Wang, P., Sørensen, O.T., Meng, G., & Peng, D. (1997). Preparation of Nd-doped BaCeO3 proton-conducting ceramics by homogeneous oxalate coprecipitation. Journal of Materials Chemistry, 7(8), 1533–1539. doi: 10.1039/a608289k
- [44] Li, P.W., & Chyu, M.K. (2005). Electrochemical and Transport Phenomena in Solid Oxide Fuel Cells. Journal of Heat Transfer,127(12), 1344–1362. doi: 10.1115/1.2098828
- [45] Akkaya, A.V. (2007). Electrochemical model for performance analysis of a tubular SOFC. International Journal of Energy Research, 31(1), 79–98. doi: 10.1002/er.1238
- [46] Xie, K., Ma, Q., Lin, B., Jiang, Y., Gao, J., Liu, X., & Meng, G. (2007). An ammonia-fuelled SOFC with a BaCe0.9Nd0.1O3−δ thin electrolyte prepared with a suspension spray. Journal of Power Sources, 170(1), 38–41. doi: 10.1016/j.jpowsour.2007.03.059
- [47] Ni, M., Leung, D.Y.C., & Leung, M.K.H. (2008). Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte. Journal of Power Sources, 183(2),687–692. doi: 10.1016/j.jpowsour.2008.05.018
- [48] Zhang, L., & Yang, W. (2008). Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte. Journal of Power Sources, 179(1), 92–95. doi: 10.1016/j.jpowsour.2007.12.061
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-778433d7-3e80-4431-b6cd-0b1b1d81f666