PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

New insights into pyrite-hydrogen peroxide interactions during froth flotation : experimental and DFT study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrogen peroxide (H2O2) is an efficient depressant for pyrite (FeS2) flotation. However, the depressing mechanism of H2O2 is not fully understood. In this paper, the depressing capacity of H2O2 for pyrite was examined by flotation tests. Results revealed that pyrite flotation could be inhibited by H2O2 at pH 6.4. The pyrite powder in H2O2 solution enhanced the release of O2 from H2O2. However, the O2 concentration in the solution was less than that of H2O2; thus, H2O2 is the major oxidant in the solution. Moreover, density functional theory calculations were performed to study the interactions between H2O2 and hydrated pyrite (100) surface. The H2O2 molecule tended to react with the pyrite surface to generate one S=O bond and an H2O molecule. The possible binding models of O2 molecules on the pyrite (100) surface were also studied for comparison. The O2 dissociation on the pyrite surface was more favorable than the adsorption of O2 as a whole. In addition, the orbital interaction in the S=O bond raised from the reaction of H2O2/O2 with the pyrite surface was also investigated by the density states analysis. These results provide some insights into the oxidizing effect of H2O2 in pyrite flotation.
Rocznik
Strony
art. no. 157409
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming 650093, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming 650093, China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources, China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
Bibliografia
  • BAI, X., LIU, J., WEN, S., LIN, Y., 2021. Effect and mechanism of organic depressant on the hydrophobicity of chalcopyrite and pyrite under weakly alkaline environment. J. Mater. Res. Technol. 15, 4109-4116.
  • BAI, X., LIU, J., WEN, S., LIN, Y., 2022. Selective separation of chalcopyrite and pyrite using a novel organic depressant at low alkalinity.Miner. Eng. 185, 107677.
  • CHEN, J., CHEN, Y., LONG, X., LI, Y., 2017. DFT study of coadsorption of waterand oxygen on galena (PbS) surface: An insight into the oxidation mechanism of galena. Appl. Surf. Sci.., 420, 714-719.
  • CHEN, J., LAN, L., CHEN, Y., 2013. Computational simulation of adsorption and thermodynamic study of xanthate, dithiophosphate and dithiocarbamate on galena and pyrite surfaces. Miner. Eng. s 46–47(3), 136–143.
  • CHEN, J., LI, Y., ZHAO, C., 2014a. First principles study of the occurrence of gold in pyrite.Comput. Mater. Sci. 88, 1-6.
  • CHEN, J., LONG, X., CHEN, Y., 2014. Comparison of Multilayer Water Adsorption on the Hydrophobic Galena (PbS) and Hydrophilic Pyrite (FeS2) Surfaces: A DFT Study. J. Phys. Chem. C. 118, 11657-11665.
  • CHEN, Y., FENG, B., ZHONG, C., WANG, Z., 2022. Effect andmechanism of the xanthate/H2O2addition order on flotation separation of chalcopyrite and sphalerite.Miner. Eng. 188, 107851.
  • DERYCKE, V., KONGOLO, M., BENZAAZOUA, M., MALLET, M., BARRES, O., DE DONATO, P., BUSSIERE, B., MMERMILLOD-BLONDIN, R., 2013. Surface chemical characterization of different pyrite size fractions for flotation purposes.Int. J. Miner. Process. 118, 1-14.
  • FORSON, P., ZANIN, M., SKINNER, W., ASAMOAH, R., 2021. Differential flotation of pyrite and arsenopyrite: Effect of hydrogen peroxide and collector type.Miner. Eng. 163,106808.
  • FOUCAUD, Y., BADAWI, M., FILIPPOV, L., FILIPOVA, I., LEBEGUE, S., 2019. A review of atomistic simulation methods for surface physical-chemistry phenomena applied to froth flotation.Miner. Eng.143, 106020.
  • FRANCIS, G.P., PAYNE, M.C, 1990. Finite basis set corrections to total energy pseudopotential calculations.J. Phys.: Condens. Matter. 2, 4395-4404.
  • GISBERT, G., TORNOS, F., LOSANTOS, E., MCLENAGHAN, S., PONS, J.M., VIDEIRA, J.C., BORDBECK, M,. 2022. Vectors to ore in replacive volcanogenic massive sulphide deposits of the northern Iberian Pyrite Belt: Major and trace element mineral chemistry.Ore Geol. Rev. 147, 104963.
  • HAN, R., QIN, K., GROVES, D.I., HUI, K., LI, Z., ZOU, X., LI, G., SU, S., 2022. Ore-formation at the Halasheng Ag-Pb-Zn deposit, northeast Inner Mongolia as revealed by trace-element and sulfur isotope compositions of ore-related sulfides.Ore Geol. Rev. 144, 104853.
  • HONG, G., JUNHYUN, C., HAN, Y., KWANG-SUK, Y., KWANHO, K., BAE, K.S., HYUNJUNG, K., 2017. Relationship between Surface Characteristics and Floatability in Representative Sulfide Minerals: Role of Surface Oxidation.Mater. Trans. 58, 1069-1075.
  • HUANG, T., LEI, S., JI, M., LIU, Y., FAN, Y., 2017. Density functionaltheory study of oxygen atom adsorption on different surfaces of pyrite.J. Wuhan. Univ. Technol. Mater. Sci Ed Sci. Ed., 32(6), 1464-1469.
  • JAVADI NOOSHABADI, A., LARSSON, A.-C., KOTA, H.R., 2013. Formation of hydrogen peroxide by pyrite and its influence on flotation. Miner. Eng. 49, 128-134.
  • JAVADI NOOSHABADI, A., RAO, K.H., 2016. Complex sulphide ore flotation: Effect of depressants addition during grinding on H2O2formation and its influence on flotation.Int. J. Miner. Process, 157, 89-97.
  • JIN, J., MILLER, J.D., DANG, L.X., WICK, C.D., 2015. Effect of surface oxidation on interfacial water structure at a pyrite (100) surface as studied by molecular dynamics simulation.Int. J. Miner. Process. 139, 64-76.
  • JIN, J., WANG, X., GAO, P., LIU, J., ZHU, Y., HAN, Y., 2021. Selective adsorption behavior and mechanism of a high-performance depressant in the flotation separation of pyrite from talcum.J. Mol. Liq. 325, 114707.
  • KHOSO, S.A., GAO, Z., SUN, W., 2021. Recovery of high-grade copper concentrate from sulfur-rich porphyry ore using tricarboxystarch micromolecule as pyrite depressant. Miner. Eng. 168, 106916.
  • KHOSO, S.A., HU, Y., LÜ, F., GAO, Y., LIU, R., SUN, W., 2019. Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite.T Nonferr Metal Soc. 29, 2604-2614.
  • KHOSO, S.A., HU, Y., LYU, F., LIU, R., SUN, W.,2019b, Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant.J. Cleaner Prod. 232, 888-897.
  • LU, C., WANG, Y., QIAN, P., LIU, Y., FU, G., DING, J., YE, S., CHEN, Y., 2018. Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate.Chin. J. Chem. Eng. 26(9), 1814-1821.
  • LI, Y., CHEN, J., CHEN, Y., GUO, J., 2011. Density functional theory study of influence of impurity on electronic properties and reactivity of pyrite. T. Nonferr. Metal. Soc, 21(8), 1887-1895.
  • LI, Y., CHEN, J., CHEN, Y., ZHAO, C., LEE, M. –H., LIN, T.-H., 2018. DFT+U study on the electronic structures and optical properties of pyrite and marcasite. Comput. Mater. Sci., 150, 346-352.
  • LIU, D., YI, M., YANG, S., LIIU, F., LI, Y., 2022. Performance and mechanism of the pyrite-kerogen complexes oxidation with H2O2 at low temperature during shale stimulation: An experimental and modeling study.Appl. Geochem. 143, 105382.
  • LIU, D., ZHANG, G., CHEN, Y., 2021. Studies on the selective flotation of pyrite from fine serpentine by using citric acid as depressant.Miner. Eng. 165, 106742.
  • MU, Y., PENG, Y., LAUTEN, R.A., 2016. The depression of pyrite in selective flotation by different reagent systems –A Literature review.Miner. Eng. 96-97, 143-156.
  • Muravyov, M., 2019. Bioprocessing of mine waste: effects of process conditions. Chem. Pap. 73, 3075-3083.
  • PERDEW, J.P., BURKE, K., ERNZERHOF, M., 1996. Generalized Gradient Approximation Made Simple.Phys. Rev. Lett 7:3865-3868.
  • PERDEW, J.P., ZUNGER, A., 1981. Self-interaction correction to density-functional approximations for many-electron systems.Phys. Rev. B. 23, 5048.
  • PERRON, H., VANDENBORRE, J., DOMAIN, C., DROT, R., ROQUES, J., SIMONI, E., EHRHARDT, J.J., CATALETTE, H., 2007. Combined investigation of water sorption on TiO2rutile (1 1 0) single crystal face: XPS vs. periodic DFT.Surf. Sci. 601, 518-527.
  • ROZGONYI, T., STIRLING, A., 2015.DFT Study of Oxidation States on Pyrite Surface Sites. J. Phys. Chem. C. 119, 7704-7710.
  • SEGALL, M., LINDAN, P.J., PROBERT, M.A., PICKARD, C., HASNIP, P., CLARK, S., PAYNE, M., 2002. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter. 14, 2717.
  • SUYANTARA, G.P.W., HIRAJIMA, T., MIKI, H., SAKAKI, K., YAMANE, M., TAKIDA, E., KUROIWA, S., IMAIZUMI, Y., 2018. Selective flotation of chalcopyrite and molybdenite using H2O2 oxidation method with the addition of ferrous sulfate. Miner. Eng. 122, 312-326.
  • TARCHOUNA, Y., BAHRI, M., JAIDANE, N., LAKHDAR, Z.B., 2006. Kinetic study of the hydrogen abstraction reaction H2O2+H→H2+HO2by ab initio and density functional theory calculations. J. Mol. Struct.: THEOCHEM. 758, 53-60.
  • YANG, X., LI Y., FANR., DUAN, W., HUANG, L., XIAO, Q., 2022. Separation mechanism of chalcopyrite and pyrite due to H2O2 treatment in low-alkaline seawater flotation system.Miner. Eng. 176, 107356.
  • ZHANG, H., ZHANG, F., SUN, W., CHEN, D., CHEN, J., WWANG R., HAN, M., ZHANG, C., 2023. The effects of hydroxyl on selective separation of chalcopyrite from pyrite: A mechanism study.Appl. Surf. Sci. 608, 154963.
  • ZHANG, P., HUANG, W., JI, Z., ZHOU, C., YUAN, S., 2018. Mechanisms of hydroxyl radicals production from pyrite oxidation by hydrogen peroxide: Surface versus aqueous reactions.Geochim. Cosmochim. Acta. 238, 394-410.
Uwagi
Financial support from the Analysis and Testing Foundation of Kunming University of Science and Technology (PR China), National Natural Science Foundation of China (22068020), and the Yong Top-notch Talent Project of Yunnan Ten Thousand Talent Plan (Yunnan Province, PR China) is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-777ea315-427c-4691-b9de-2229f3465582
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.