Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An attempt has been made to selectively oxidise synthetic lignin-like polymer for fine chemicals. The G- and S-type polymers (G- and S- type lignin model polymers) were synthesized using simple aromatic compounds as starting materials and then oxidised to benzaldehydes by reacting them with Co(salen) catalytic system. The reaction was characterized by measuring the change of the polymer with FTIR, C-13 NMR and GC-MS spectroscopy. The results obtained by the FTIR and C-13 NMR showed that the effects of NaOH were important and higher yield of benzaldehydes characterized by GC-MS in the presence of NaOH in the course of catalytic oxidation of the polymer demonstrated these effects. From the results, the catalyst could suitably be used in green procedures for lignin transformation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
91--96
Opis fizyczny
Bibliogr. 28 poz., wykr., wz.
Twórcy
autor
- Kunming University of Science and Technology, P.O. Box A302-12, Building No. 5, Xinying Yuan, No. 50, Huancheng East Road, Kunming, 650051, China
- Southwest University of Science and Technology, Engineering Research Center for Biomass Resource Utilization and Modifi cation of Sichuan Province, Mianyang, 621010, China
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technique of Hubei Normal University, Huangshi, China
Bibliografia
- 1. Yamada, S. (1999). Advancement in stereochemical aspects of schiff base metal complexes. Coordin. Chem. Rev. 190-192, 537-555. DOI: 10.1016/s0010-8545(99)00-099-5.
- 2. Manickam, R. & Kulandaivelu, K. (2012). Meso-tetraphenylporphyriniron (iii) chloride catalyzed oxidation of aniline and its substituents by magnesium monoperoxyphthalate in aqueous acetic acid medium. Pol. J. Chem. Tech. 14 (4), 35-41. DOI:10.2478/v10026-0120099 9.
- 3. Sandaroos, R., Goldani, M.T., Damavandi, S. & Mohammadi, A. (2012). Efficient asymmetric Baeyer-Villiger oxidation of prochiral cyclobutanones using new polymer-supported and unsupported chiral Co(salen) complexes. J. Chem. Sci. 124 (4), 871-876. DOI: 10.100 /s12039-012-0277-6.
- 4. Cozzi, P.G. (2004). Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 33, 410-421. DOI: 10.1039/B307853C.
- 5. Salanti, A., Orlandi, M., Tolppa, E.A.L. & Zoia, Luca. (2010). Oxidation of isoeugenol by salen complexes with bulky substituents. Int. J. Mol. Sci. 11, 912-926. DOI: 10.3390/ ijms11030912.
- 6. Cedeno, D. & Bozell, J.J. (2012). Catalytic oxidation of para-substituted phenols with cobalt-schiff base complexes/ O2-selective conversion of syringyl and guaiacyl lignin models to benzoquinones. Tetrahedron Lett. 53, 2380-2383. DOI: 10.1016/j.tetlet.2012.02.093.
- 7. Shiryaev, A.K. (2012). Recent advances in chiral catalysis using metal salen complexes. Curr. Org. Chem. 16, 1788-1807. DOI: 10.2174/138527212802651340.
- 8. Haikarainen, A., Sipilä, J., Pietikäinen, P., Pajunen, A. & Mutikainen, I. (2001). Synthesis and characterization of bulky salen-type complexes of Co, Cu, Fe, Mn and Ni with amphiphilic solubility properties. J. Chem. Soc., Dalton Trans. 991-995. DOI: 10.1039/B008167L.
- 9. Rajagopalan, B., Cai, H., Busch, D.H. & Subramaniam, B. (2008). The catalytic efficacy of Co(salen)(AL) in O2 oxidation reactions in CO2-expanded solvent media: Axial ligand dependence and substrate selectivity. Catal. Lett. 123, 46-50. DOI: 10.1007/s10562-007-9379z.
- 10. Badamali, S.K., Luque, R., Clark, J.H. & Breeden, S.W. (2011). Co(salen)/SBA-15 catalysed oxidation of a β-O-4 phenolic dimer under microwave irradiation. Catal. Commun. 12, 993-995. DOI: 10.1016/J.CATCOM.2011.02.025.
- 11. Haikarainen, A. (2005). Metal-salen catalysts in the oxidation of lignin model compounds. Unpublished doctoral dissertation, University of Helsinki, Finland.
- 12. Zhou, X.F., Qin, J.X. & Wang, S.R. (2011). Oxidation of a lignin model compound of benzyl-ether type linkage in water with H2O2 under an oxygen atmosphere catalyzed by Co(salen). Drewno 54, 15-25.
- 13. Zhang, N. & Zhou, X.F. (2012). Salen copper (ii) complex encapsulated in Y zeolite: An effective heterogeneous catalyst for TCF pulp bleaching using peracetic acid. J. Mol. Catal. A: Chem. 365, 66-72. DOI: 10.1016/j.molcata.2012.08.010.
- 14. Zhou, X.F. & Liu, J. (2012). Co(salen)-catalysed oxidation of synthetic lignin-like polymer: Co(salen) effects. Hem. Ind. (Chem. Ind.) 66, 685-692. DOI: 10.2298/HEMIND120124031Z.
- 15. Crestini, C., Crucianelli, M., Orlandi, M. & Saladino, R. (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal. Today 156, 8-22. DOI: 10.1016/j.cattod.2010.03.057.
- 16. Aresta, M., Dibenedetto, A. & Dumeignil, F. (2012). Biorefinery: from biomass to chemicals and fuels. Berlin/Boston: Water de Gruyter Gmbh & Co. KG.
- 17. Kishimoto, T., Uraki, Y. & Ubukata, M. (2005). Easy synthesis of β-O-4 type lignin related polymers. Org. Biomol. Chem. 3, 1067-1073. DOI: 10.1039/B416699J.
- 18. Megiatto, J.D.Jr., Cazeils, E., Grelier, S., Gardrat, C., Ham-Pichavant, F. & Castellan, A. (2009). Synthesis of a lignin polymer model consisting of only phenolic β-O-4 linkages and testing its reactivity under alkaline conditions. Holzforschung 63, 681-689. DOI: 10.1515/HF 2009.056.
- 19. Katahira, R., Kamitakahara, H., Takano, T. & Nakatsubo, F. (2006). Synthesis of β-O-4 type oligomeric lignin model compound by the nucleophilic addition of carbanion to the aldehyde group. J. Wood Sci. 52, 1-6. DOI: 10.1007/ s10086-005-0756-1.
- 20. Lin, S.Y. & Dence, C.W. (1992). Methods in lignin chemistry. Berlin, Heidelberg: Springer-Verlag.
- 21. Elder, T. & Bozell, J.J. (1996). Cobalt-schiff base complex catalyzed oxidation of para-substituted phenolics. molecular orbital calculations on phenolic substrates. Holzforschung 50, 24-30. DOI: 10.1515/hfsg.1996.50.1.24.
- 22. Raisanen, M.T., Korpi, H., Sundberg, M.R., Savin, A., Leskela, M. & Repo, T. (2013). Synthesis and characterization of binuclear Co(II) complexes with bis(salen-type) ligands. Inorg. Chim. Acta 394, 203-209. DOI: 10.1016/j.ica.2012.08.00722.
- 23. Whittaker, M.M. & Whittaker, J.W. (2001). Catalytic reaction profile for alcohol oxidation by galactose oxidase. Biochem. 40, 7140-7148. DOI: 10.1021/bi010303123.
- 24. Crestini, C., Pastorini, A. & Tagliatesta, P. (2004). Metalloporphyrins immobilized on montmorillonites as biomimetic catalysts in the oxidation of lignin model compounds. J. Mol. Catal. A: Chem. 195-202. DOI:10.1016/j.molcata.2003.07.015.
- 25. Lebo, Jr., S.E., Gargulak J.D. & McNally, T.J. (2001). Lignin. In Kirk-othmer encyclopedia of chemical technology. John Wiley & Sons, Inc.
- 26. Kervinen, K., Korpi, H., Mesu, J.G., Soulimani, F., Repo, T., Rieger, B., Leskelä, M. & Weckhuysen, B.M. (2005). Mechanistic insights into the oxidation of veratryl alcohol with Co(salen) and oxygen in aqueous media: an in-situ spectroscopic study. Eur. J. Inorg. Chem.2591-2599. DOI: 10.1002/ ejic.200500042.
- 27. Kervinen, K., Korpi, H., Leskelä, M. & Repo, T. (2003). Oxidation of veratryl alcohol by molecular oxygen in aqueous solution catalyzed by cobalt salen-type complexes: the effect of reaction conditions. J. Mol. Catal. A: Chem. 203, 9-19. DOI: 10.1016/S1381-1169(03)00156-0.
- 28. Sippola, V. (2006). Transition metal-catalysed oxidation of lignin model compounds for oxygen delignification of pulp. Unpublished doctoral dissertation, Helsinki University of Technology, Espoo, Finland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-777e6766-28ad-4921-8734-fbf842009850