PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nowoczesność z tradycją – nowe trendy w rozwoju obróbki ubytkowej

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Modernity with tradition – new trends in the development of subtractive manufacturing
Języki publikacji
PL
Abstrakty
PL
W niniejszym opracowaniu autorzy zaprezentują krótką charakterystykę wybranych technologii w zakresie obróbki ubytkowej. Stanowią one idealne rozwiązanie zarówno w produkcji wielkoseryjnej, w tym również w obróbce specjalizowanych części maszyn i materiałów trudnoobrabialnych, niejednokrotnie o skomplikowanych finalnych kształtach, jak i w pracach naukowo- badawczych wymagających precyzji technologicznej i dokładności wymiarowej elementów niezbędnych w prowadzonych eksperymentach.
EN
In this paper, the authors present a brief description of selected technologies in the field of subtractive manufacturing. They are an ideal solution both for large-scale production, including the machining of specialised machinery parts and difficult-to-machine materials, often of complex final shapes, as well as for scientific and research works requiring technological precision and dimensional accuracy of elements necessary in the conducted experiments.
Rocznik
Tom
Strony
14--26
Opis fizyczny
Bibliogr. 89 poz.
Twórcy
  • Katedra Materiałów Inżynierskich i Biomedycznych, Wydział Mechaniczny Technologiczny, Politechnika Śląska
autor
  • Katedra Materiałów Inżynierskich i Biomedycznych, Wydział Mechaniczny Technologiczny, Politechnika Śląska
Bibliografia
  • 1. Oberg E., Jones F.D., McCauley C.J., Heald R.M.: Machinery’s Handbook (27th ed.). Industrial Press, 2004.
  • 2. Jeong H.I., Lee Ch.M.: A study on improvement of tool life using a heat shield in laser assisted machining to Inconel 718.,,Optics & Laser Technology”, 142, 2021, 107208.
  • 3. Faga G., Priarone P.C., Robiglio M., Settineri L., Tebaldo V.: Technological and sustainability implications of dry, near-dry, and wet turning of Ti-6Al-4V alloy. „Int. J. Precis. Eng. Manuf. – Green Technol.”, 4, 2017, 129-139.
  • 4. Soo S.L., Khan S.A., Aspinwall D.K., Harden P., Mantle A.L., Kappmeyer G., Pearson D., M’Saoubi R.: High speed turning of Inconel 718 using PVD-coated PCBN tools. „CIRP Ann. – Manuf. Technol.” 65, 2016, 89-92.
  • 5. Azhdari Tadavani S., Shoja Razavi R., Vafaei R.: Pulsed laser-assisted machining of Inconel 718 superalloy. „Opt. Laser Technol.”, 87, 2017, 72-78.
  • 6. Klink A., Arntz K., Johannsen L., Holstenothar Chrubasik M., Winand K., Wollbrink M., Bletek T., Gerretz V., Bergs T.: Technology-based assessment of subtractive machining processes for mold manufacture. „Procedia CIRP”, 71, 2018, 401-406.
  • 7. McGeough J.A.: Principles of Electrochemical Machining. Chapman and Hall, London 1974.
  • 8. Davydov A.D., Volgin V.M.: Electrochemical Machining. (In:) Bard A.J. (ed.): Encyclopedia of Electrochemistry, Electrochemical Engineering. New York, Willey-VCH, 2007.
  • 9. Rajurkar K.P., McGeough J.A., Kozak J., De Silva A.: New Developments in Electro-Chemical Machining. „Annals of the CIRP”, Vol. 48/2, 1999, 567-579.
  • 10. Zhu D., Zhu D., Xu Z.Y., Zhou L.S.: Trajectory control strategy of cathodes in blisk electrochemical machining. „Chin. J. Aeronaut.”, 26, 2013, 1064-1070.
  • 11. Klocke F., Zeis M., Klink A.: Interdisciplinary modelling of the electrochemical machining process for engine blades. „CIRP Ann – Manuf. Technol.”, 64, 2015, 217-220.
  • 12. Kozaka J., Zybura-Skrabalak M.: Some Problems of Surface Roughness in Electrochemical Machining (ECM). „Procedia CIRP”, 42, 2016, 101-106.
  • 13. Dąbrowski L., Keller R., Tomczak J.: Precyzyjna obróbka elektrochemiczna, obróbka impulsowa ECM, aplikacje. Przykłady innowacyjnego wykorzystania precyzyjnych obrabiarek ECM. „Inżynieria Maszyn”, r. 16, z. 4, 2011.
  • 14. D’Andrea D., Pistone A., Risitano G., Santonocito D., Scappaticci L., Alberti F.: Tribological characterization of a hip prosthesis in Si3N4-TiN ceramic composite made with Electrical Discharge Machining (EDM). „Procedia Structural Integrity”, 33 (2021), 469-481.
  • 15. Gouda D., Panda A., Nanda B.K., Ashok R.K., Sahoo K., Routara B.Ch.: Recently evaluated Electrical Discharge Machining (EDM) process performances: A research perspective. „Materials Today: Proceedings”, 44/ 1, 2021, 2087-2092.
  • 16. Shirsendu D., Swarup P., Biswanath D.: A gap-active electrical discharge machining (GA-EDM) to rectify the textural defects of the processed surface. „Journal of Manufacturing Processes”, 64, 2021, 594-605.
  • 17. Abdoli H., Allaee M.H., Abdoli J.: The effect of electrical discharge machining parameters on the surface quality of 3D woven carbon/carbon composite. „Materials Today: Proceedings” (Availabe online 25 November 2021).
  • 18. Pandey A.K., Anas M.: Sustainability and recent trends in micro-electric discharge machining (μ-EDM): A stateof- the-art review. „Materials Today: Proceedings” (Availabe online 30 November 2021).
  • 19. Mruthunjaya M., Yogesha K.B.A.: Review on conventional and thermal assisted machining of titanium based alloy. „Materials Today: Proceedings”, 46, 17, 2021, 8466- 8472.
  • 20. Bermingham M.J., Palanisamy S., Darguscha M.S.: Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. „International Journal of Machine Tools and Manufacture”, 62, 2012, 76-87.
  • 21. Woo W.S., Lee Ch.M.: Innovative use of multi-heat sources for improvement of tool life in thermally assisted machining of high-strength material. „Journal of Manufacturing Processes”, 38, 2019, 30-37.
  • 22. Pfefferkorn F.E., Shuting L., Yongho J., Haddad G.: A metric for defining the energy efficiency of thermally assisted machining. „International Journal of Machine Tools and Manufacture”, 49/5, 2009, 357-365.
  • 23. Kim J.H., Kim E.J., Lee Ch.M.: A study on the heat affected zone and machining characteristics of difficult-to-cut materials in laser and induction assisted machining. „Journal of Manufacturing Processes”, 57, 2020, 499-508.
  • 24. Venkatesan K., Ramanujam R.: Statistical approach for optimization of influencing parameters in laser assisted machining (LAM) of Inconel alloy. „Measurement”, 89, 2016, 97-108.
  • 25. Guo Y., Yang X., Kang J., Li M., Xie Q., Xiao J., Zhang W.: Experimental investigations on the laser-assisted machining of single crystal Si for optimal machining. „Optics & Laser Technology”, 141, 2021, 107-113.
  • 26. Zhai Ch., Xu J., Hou Y., Sun G., Zhao B., Yu H.: Effect of fiber orientation on surface characteristics of C/SiC composites by laser-assisted machining. „Ceramics International” (Availabe online 20 November 2021).
  • 27. Kong X., Wang J., Wang M., Wangm B., Zheng Y., Yang L.: Mechanisms involved in the tool life improvement of laser assisted machining 45%SiCp/Al composites. „Optics & Laser Technology”, 139, 2021, 106919.
  • 28. Mirad M.M., Das B.: A critical review of the state of the art literature in the monitoring of ultrasonic machining process and tool failure prediction. „Engineering Failure Analysis”, 130, 2021, 105769.
  • 29. Sabareesan S., Vasudevan D., Sridhar S., Kannan R., Sankar V.: Response analysis of ultrasonic machining process under different materials – Review. „Materials Today: Proceedings”, 45, 2021, 2340-2342.
  • 30. Vipindas K., Kuriachen B., Mathew J.: An insight on ultrasonic machining technology, Advanced Machining and Finishing, Handbooks. „Advanced Manufacturing”, 2021, 451-478.
  • 31. Sharma A., Kalsia M., Singh A., Babbar U.A., Dhawan V.: Machining of hard and brittle materials: A comprehensive review. „Materials Today: Proceedings” (Availabe online 4 August 2021).
  • 32. Bagavathy S., Ramesh P., Kumar P., Raj A.Ch., Stalin B.: Frequency measurement through electric network analyzer for ultrasonic machining of steel. „Materials Today: Proceedings”, 45, 2021, 1775-1778.
  • 33. Wang J., Fu J., Wang J., Du F., Liewb P.J., Shimad K.: Processing capabilities of micro ultrasonic machining for hard and brittle materials: SPH analysis and experimental verification. „Precision Engineering”, 63, 2020, 159-169.
  • 34. Kuriakose S., Patowari P.K., Bhatt J.: Machinability study of Zr-Cu-Ti metallic glass by micro hole drilling using micro-USM. „Journal of Materials Processing Technology”, 240, 2017, 42-51.
  • 35. Joel C., Joel L., Muthukumaran S., Shanthini P.M.: Parametric optimization of abrasive water jet machining of C360 brass using MOTLBO. „Materials Today: Proceedings”, 37/2, 2021, 1905-1910.
  • 36. Amar A.K., Tandon P.: Investigation of gelatin enabled abrasive water slurry jet machining (AWSJM). „CIRP Journal of Manufacturing Science and Technology”, 33, 2021, 1-14.
  • 37. Balaji K., Siva Kumar M., Yuvaraj N.: Multi objective Taguchi-grey relational analysis and krill herd algorithm approaches to investigate the parametric optimization in abrasive water jet drilling of stainless steel. „Applied Soft Computing”, 102, 2021, 107075.
  • 38. Jani S.P., Senthil Kumar A., Adam Khan M., Sujin Jose A.: Design and optimization of unit production cost for AWJ process on machining hybrid natural fibre composite material. „International Journal of Lightweight Materials and Manufacture”, 4/4, 2021, 491-497.
  • 39. Wang S., Hu D., Yang F., Lin P.: Investigation on kerf taper in abrasive water jet machining of aluminium alloy 6061-T6. „Journal of Materials Research and Technology”, 15, 2021, 427-433.
  • 40. Zhang Y., Liu D., Zhang W., Zhu H., Huang Ch.: Hole characteristics and surface damage formation mechanisms of Cf/SiC composites machined by abrasive waterjet. „Ceramics International” (Availabe online 10 November 2021).
  • 41. Deja M., Markopoulos A.P.: Machines. „Special Issue Advances and Trends in Non-conventional, Abrasive and Precision Machining”, 2021.
  • 42. Rajendra Unune D., Singh Mali H.: Current status and applications of hybrid micro-machining processes: A review, „Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture”, 2014.
  • 43. Ranti Oke S., Seun Ogunwande G., Onifade M., Aikulola E., Dolapo Adewale E., Emmanuel Olawale O., Ebun Ayodele B., Mwema F., Obiko J., Oluwatosin Bodunrin M.: An overview of conventional and non-conventional techniques for machining of titanium alloys. „Manufacturing Rev.”, 7 (2020) 34.
  • 44. Yue X., Liu J., Liu Y.: Investigation of electric field distribution and material removal process in nano electro machining. „Materials Today Communications”, 28, 2021, 102629.
  • 45. Zhang J., Suzuki N., Shamoto E., Xu J.: Dynamic contour error compensation in micro/nano machining of hardened steel by applying elliptical vibration sculpturing method. „Precision Engineering”, 71, 2021, 250-262.
  • 46. Wang Y., Guo J.: Effect of abrasive size on nano abrasive machining for wurtzite GaN single crystal via molecular dynamics study. „Materials Science in Semiconductor Processing”, 121, 2021, 105439.
  • 47. Wang Y., Tang S., Guo J.: Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining. „Applied Surface Science”, 510, 2020, 145492.
  • 48. Klocke F., Zeis M., Harst S., Klink A., Veselovac D., Baumgärtne M.: Modeling and Simulation of the Electrochemical Machining (ECM) Material Removal Process for the Manufacture of Aero Engine Components. „Procedia CIRP”, 8 (2013), 265-270,
  • 49. Klocke F., Klink A., Veselovac D.: Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes. „CIRP Ann. Manuf. Technol.”, 63, 2014, 703-726.
  • 50. Schimmelpfennig T.M., Lorenz G., Rübeling M.: Development of novel gap control method for the Electrical Discharge Machining (EDM) of implant-supported denture. „Procedia CIRP”, 95, 2020, 610-614.
  • 51. Khan M.Y., Sudhakar Rao P., Pabla B.S.: Materials Today: Proceedings Powder mixed electrical discharge machining (PM-EDM): A methodological review (Available online 19 November 2020).
  • 52. Hocheng H., Guu Y.H., Tai N.H.: The Feasibility Analysis of Electrical-Discharge Machining of Carbon-Carbon Composites. „Mater. Manuf. Processes”, 13/1, 1998, 117-132.
  • 53. Beri N., Maheshwari S., Sharma C., Kumar A.: Technological Advancement in Electrical Discharge Machining with Powder Metallurgy Processed Electrodes: A Review. „Mater. Manuf. Processes”, 25/10, 2010, 1186.
  • 54. Khan M.Y., Rao P.S.: Optimization of process parameters of electrical dischargemachining process for performance improvement. „Int. J. Inn. Technol. Explor. Engg.”, 8/11, 2019, 3830-3836.
  • 55. Nanimina A.M., Rani A.M.A., Ginta T.L.: Assessment of powder mixed EDM: A review. MATEC Web of Conferences 13, 2014.
  • 56. Rajkumar H., Vishwakamra M.: Performance parameters characteristicsof PMEDM: A review. „Int. J. Appl. Eng. Res.”, 13/7, 2018, 5281-5290.
  • 57. Singh S., Bhardwaj A.: Review to EDM by using water and powdermixed dielectric fluid. „J. of Minerals and Mat. Characterization and Eng.”, 10/2, 2011, 199.
  • 58. Singh A., Singh R.: Effect of powder mixed electric discharge machining (PMEDM) on various materials with different powders: A review. „Int. J. Innov. Res. Sci. Technol.”, 2/3, 2015, 164-169.
  • 59. Joshi A.Y., Joshi A.Y.: A systematic review on powder mixed electrical discharge machining. „Heliyon”, 5/12, 2019, e02963.
  • 60. Batish A., Bhattacharya A., Singla V.K., Singh G.: Study of material transfer mechanism in die steels using powder mixed electric discharge machining. „Mat. and Manufact Proc.”, 27/4, 2012, 449-456.
  • 61. Boopathi R., Sundaram S.: Influence of Process Parameters for Electrical Discharge Machine Using Nano Particle and Brass Electrode. „Int. J. of Res. in Advent. Technol.”, 2, 11, 2014, 45-49.
  • 62. Shabgard M., Khosrozadeh B.: Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti-6Al-4V alloy in EDM process. „J. Manuf. Processes”, 25, 2017, 212-219.
  • 63. Sabareesan S., Vasudevan D., Sridhar S., Kannan R., Sankar V.: Response analysis of ultrasonic machining process under different materials – Review. „Materials Today: Proceedings”, 45/2, 2021, 2340-2342.
  • 64. Guzzo P.L., Shinohara A.H., Raslan A.A.: A comparative study on ultrasonic machining of hard and brittle materials. „Journal of the Brazilian Society of Mechanical Sciences and Engineering”, 26/1, 2004, 56-61.
  • 65. Jiao F., Niu Y., Liu X.: Effect of ultrasonic vibration on surface white layer in ultrasonic aided turning of hardened GCr15 bearing steel. „Mater. Res. Innov.”, 19/8, 2015, 938-942.
  • 66. Zou P., Xu Y., He Y., Chen M., Wu H.: Experimental investigation of ultrasonic vibration assisted turning of 304 austenitic stainless steel. „Shock. Vib.”, 2015, 2015, 1-19.
  • 67. Cheema M.S., Dvivedi A., Sharma A.K., Acharya S.: Experimental investigations in development of 3D microchannels through ultrasonic micromachining. 9 th Int. Work Microfactories, 2014, 92-95.
  • 68. Pei W., Yu Z., Li J., Ma C., Xu W., Wang X. et al.: Influence of abrasive particle movement in micro USM. „Procedia CIRP”, 6, 2013, 551-555.
  • 69. Putz M., Dix M., Morczinek F., Dittrich M.: Suspension Technology for Abrasive Waterjet (AWJ) Cutting of Ceramics. „Procedia CIRP”, 77, 2018, 367-370.
  • 70. Anand V.J., Mandal Arun K., Chaudhary K., Patidar A.: „Materials Today: Proceedings”, 44/ 1, 2021, 1975-1978
  • 71. O’Toole L., Kang C., Fang F.: Advances in Rotary Ultrasonic-Assisted Machining. „Nanomanufacturing and Metrology”, 3, 2020, 1-25.
  • 72. Schwartzentrber J., Kspelt J., Papini M.: Prediction of surface roughness in AWJM trimming of fibre reinforce polymer composite. „Int. J. Mach. Tool Manufact.”, 122, 2017, 143-15.
  • 73. Jeong H.-I., Lee C.-M: A study on improvement of tool life using a heat shield in laser assisted machining to Inconel 718. „Optics & Laser Technology”, 142, 2021, 107208.
  • 74. Woo W.S., Lee C.M.: Innovative use of multi-heat sources for improvement of tool life in thermally assisted machining of high-strength material. „J. Manuf. Process.”, 38, 2019, 30-37.
  • 75. Kalantari O., Jafarian F., Fallah M.M.: Comparative investigation of surface integrity in laser assisted and conventional machining of Ti-6Al-4 V alloy. „Journal of Manufacturing Processes”, 62, 2021, 90-98.
  • 76. Ezugwu E.O., Wang Z.M., Okeke C.I.: Tool life and surface integrity when machining Inconel 718 with PVD-and CVD-coated tools. „Tribology Transactions”, 42/2, 1999, 353-60.
  • 77. Du W., Bai Q., Zhang B.: A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts. „Procedia Manufacturing”, 5, 2016, 1018-1030.
  • 78. Song Y. A., Park S., Choi D., Jee H.: 3D welding and milling: Part I – a direct approach for freeform fabrication of metallic prototypes. „International Journal of Machine Tools and Manufacture”, 45/9, 2005, 1057-1062.
  • 79. Kasperovich G., Hausmann J.: Improvement of fatigue resistance and ductility of iAl6V4 processed by selective laser melting. „Journal of Materials Processing Technology”, 220, 2015, 202-214.
  • 80. Hansel A., Mori M., Fujishima M., Oda Y., Hyatt G., Lavernia E., Delplanque J-P.: Study on consistently optimum deposition conditions of typical metal material using additive/subtractive hybrid machine tool. „Procedia CIRP”, 46, 2016, 579-582.
  • 81. Zhao Z., Xu T.: A novel approach for process shape construction in adaptive machining of curved thin-walled part. „Precision Engineering”, 67, 2021, 282-292.
  • 82. Boral S., Chakraborty S.: Failure analysis of CNC machines due to human errors: An integrated IT2F-MCDMbased FMEA approach. „Engineering Failure Analysis”, 130, 2021, 105768.
  • 83. Sood S., Kumar Duvedi R., Bedi S., Mann S.: 3D representation and CNC machining of 2D digital images. „Procedia Manufacturing”, 26, 2018, 10-20.
  • 84. Danner L.: Computer science view of computer integrated manufacturing (CIM). „IFAC Proceedings Volumes”, 24/14/1991, 178-182.
  • 85. Sudarshan B.. Vijaya Kumar S., Sreenivas P.: The evaluation of Conventional manufacturing to an advanced manufacturing systems-A case study. „Materials Today: Proceedings”, Available online 9 May 2021.
  • 86. Matteo S., Nicla F., Andrea M.: Multiple sleeping states for energy saving in CNC machining centers. „CIRP Ann Manuf Technol.”, 80, 2019, 144-149.
  • 87. Guo J.D., Zhang L.M.: Investigation on grinding force and machining quality during rotary ultrasonic grinding deep-small hole of fluorophlogopite ceramics. „Int. J. Adv. Manuf. Technol.”, 104/5-8, 2019, 2815-2825.
  • 88. Yan W., Zhang H., Jiang Z.G., Hon K.K.B.: Multi-objective optimization of arcwelding parameters: the trade-offs between energy and thermal efficiency. „J Clean Prod.”, 140, 2017, 1842-9.
  • 89. Cai W., Liu F., Xie J., Zhou X.: An energy management approach for the mechanical manufacturing industry through developing a multi-objective energy benchmark. „Energy Convers Manage”, 132, 2017, 36-71.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7773e5c2-c66e-44ed-a280-b644a13bb6f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.