Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The surfacing layer of cobalt-based alloy is prepared using the tungsten inert gas welding (TIG) process and employing the UMCo50, ST1 and ST6 filler materials. The metallographic testing, hardness, wear and corrosion testing of different surfacing layers have been carried out. Each area of the surfacing layer is characterized using the optical and scanning electron microscope (SEM). Cellular and a few columnar dendrites have been observed near the fusion line of the UMCo50 surfacing layer, and cellular structure is observed in the central region. Dendrites and cellular crystals have been observed in the ST1 and ST6 surfacing layers. The average hardness of UMCo50, ST1 and ST6 surfacing layers are 320 HV, 672.3 HV and 497.5 HV, respectively. The wear loss of the ST1, ST6 and UMCo50 surfacing layer is 2.71 mg, 4.35 mg, and 14.57 mg, respectively. The corrosion weight loss of the ST1, ST6 and UMCo50 surfacing layers are 0.0388 g, 0.0477 g and 0.0833 g, respectively.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
17--30
Opis fizyczny
Bibliogr. 33 poz., fot, rys., tab., wzory
Twórcy
autor
- Hebei University of Technology, School of Materials Science and Engineering, No. 5340, Xipingdao Road, Beichen District, Tianjin, 300401, PR China
autor
- Hebei University of Technology, School of Materials Science and Engineering, No. 5340, Xipingdao Road, Beichen District, Tianjin, 300401, PR China
autor
- Hebei University of Technology, School of Materials Science and Engineering, No. 5340, Xipingdao Road, Beichen District, Tianjin, 300401, PR China
autor
- Hebei University of Technology, School of Materials Science and Engineering, No. 5340, Xipingdao Road, Beichen District, Tianjin, 300401, PR China
Bibliografia
- [1] A.J. Minchener, Coal gasification for advanced power generation, Fuel 84, 2222-2235 (2005). DOI: https://doi.org/10.1016/j.fuel.2005.08.035
- [2] J. Xiao, S.M. Wang, S.P. Ye, J.Y. Dong, J. Wen, Z.X. Zhang, Thermo-economic optimization of gasification process with coal water slurry preheating technology, Energy 199, 117354 (2020). DOI: https://doi.org/10.1016/j.energy.2020.117354
- [3] D.D. Li, J.Z. Liu, S.N. Wang, J. Cheng, Study on coal water slurries prepared from coal chemical wastewater and their industrial application, Appl. Energ. 268, 114976 (2020). DOI: https://doi.org/10.1016/j.apenergy.2020.114976
- [4] A. D. Kamble, V.K. Saxena, P.D. Chavan, V.A. Mendhe, Cogasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context, Int. J. Min. Sci. Techno. 29, 171-186 (2018). DOI: https://doi.org/10.1016/j.ijmst.2018.03.011
- [5] N. Mahinpey, A. Gomez, Review of gasification fundamentals and new findings: reactors, feedstock, and kinetic studies, Chem. Eng. Sci. 148, 14-31 (2016). DOI: http://doi.org/10.1016/j.ces.2016.03.037
- [6] A. Kumar, D.D. Jones, M.A. Hanna, Thermochemical biomass gasification: a review of the current status of the technology, Energies 2, 556-581 (2009). DOI: https://doi.org/10.3390/en20300556
- [7] L.E. Taba, M.F. Irfan, W.A.M.W. Daud, M.H. Chakrabarti, The effect of temperature on various parameters in coal, biomass and CO-gasification: a review, Renew. Sustain. Energy Rev. 16, 5584-5596 (2012). DOI: https://doi.org/10.1016/j.rser.2012.06.015
- [8] H. Zhao, Y.B. Hou, H.F. Liu, X.S. Tian, J.L. Xu, W.F. Li, Y. Liu, F.Y. Wu, J. Zhang, K.F. Lin, Influence of rheological properties on air-blast atomization of coal water slurry, J. Non-Newton. Fluid. 211, 1-5 (2014). DOI: https://doi.org/10.1016/j.jnnfm.2014.06.007
- [9] D.D. Wang, S. Li, S. He, L. Gao, Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation, Appl. Energ. 240, 851-859 (2019). DOI: https://doi.org/10.1016/j.apenergy.2019.02.084.
- [10] L.F. Liu, S.S. Wu, G.M. Yu, Y. Chen, Oxidation behaviour and mechanism of a cobalt based superalloy between 1050 and 1250℃, Appl. Surf. Sci. 283, 590-598 (2013). DOI: https://doi.org/10.1016/j.apsusc.2013.06.153
- [11] H.T. Xue, D. Zhou, W.B. Guo, X.P. Luan, T. Li, J.L. Zhao, Cobalt-based alloy surfacing process optimization and surfacing material performance analysis, Mater. Res. Express. 8, 026505 (2021). DOI: https://doi.org/10.1088/2053-1591/abdf1b
- [12] D. Mutascu, I. Mitelea, I. Bordeasu, M. Burca, I.D. Utu, Hardfacing of X2CrNiMoN22-5-3 duplex stainless steel with stellite alloy using pulsed TIG welding process, Mater. Today 45, 4112-4116 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.11.662
- [13] Q.Y. Hou, Z.Y. Huang, J.S. Gao, Effects of Y2O3 on the microstructure and wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process, Rare Metals 26, 103-109 (2007). DOI: https://doi.org/10.1016/S1001-0521(07)60168-5
- [14] J.H. Yao, Y.P. Ding, R. Liu, Q. L. Zhang, L. Wang, Wear and corrosion performance of laser-clad low-carbon highmolybdenum stellite alloys, Opt. Laser. Technol. 107, 32-45 (2018). DOI: https://doi.org/10.1016/j.optlastec.2018.05.021
- [15] W. Kurz, C. Bezenon, M. Gumann, A. Passerone, A. Columnar to equiaxed transition in solidification processing, Sci. Technol. Adv. Mat. 2, 185-191 (2008). DOI: https://doi.org/10.1016/S1468-6996(01)00047-X
- [16] J.X. Wen, H.Y. Che, R. Cao, H. Dong, Y.X. Ye, H.Y. Zhang, J. Brechtl, Y.F. Cao, P.K. Liaw, Evolution of the mechanical properties of a cobalt-based alloy under thermal shocks, Mater. Design. 188, 108425 (2020). DOI: https://doi.org/10.1016/j.matdes.2019.108425
- [17] N. Tang, Y.P. Li, P. Tunthawiroon, Y. Koizumi, A. Chiba, Thermo-mechanical fatigue test of a wrought Co-based alloy as potential tooling material for die casting, Mater. Sci. Eng. 615, 164-168 (2014). DOI: https://doi.org/10.1016/j.msea.2014.07.073
- [18] R. McCarron, D. Stewart, P. Shipway, D. Dini, Sliding wear analysis of cobalt based alloys in nuclear reactor conditions, Mater. Wear. 376-377, 1489-1501 (2017). DOI: https://doi.org/10.1016/j.wear.2016.12.018
- [19] V. Hegadekatte, S. Kurzenhauser, N. Huber, O. Kraft, A predictive modeling scheme for wear in tribometers, Tribol. Int. 41, 1020-1031 (2008). DOI: https://doi.org/10.1016/j.triboint.2008.02.020
- [20] R. Liu, D.Y. Li, Modification of Archard’s equation by taking account of elastic/pseudoelastic properties of materials, Wear 251, 956-964 (2001). DOI: https://doi.org/10.1016/S0043-1648(01)00711-6
- [21] X.C. Yan, C. Chang, Z.Y. Deng, B.W. Lu, Q.K. Chu, X.C. Chen, W.Y. Ma, H.L. Liao, M. Liu, Microstructure, interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel, Tribol. Int. 157, 106873 (2021). DOI: https://doi.org/10.1016/j.triboint.2021.106873
- [22] J. Sha, L.Y. Chen, X.T. Liu, Z.J. Yao, S. Lu, Z.X. Wang, Q.H. Zang, S.H. Mao, L.C. Zhang, Phase Transformation-Induced Improvement in Hardness and High-Temperature Wear Resistance of Plasma-Sprayed and Remelted NiCrBSi/WC Coatings, Metals 10, 1688 (2020). DOI: https://doi.org/10.3390/met10121688
- [23] J.J. Yuan, Q.Z. Wang, X.Y. Liu, S.M. Lou, Q. Li, Z.M. Wang, Microstructures and high-temperature wear behavior of NiAl/ WC-Fex coatings on carbon steel by plasma cladding, J. Alloy Compd. 842, 155850 (2020). DOI: https://doi.org/10.1016/j.jallcom.2020.155850
- [24] P.K. Deshpande, R.Y. Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Mater. Sci. Eng. A. 418, 137-145 (2006). DOI: https://doi.org/10.1016/j.msea.2005.11.036
- [25] Y.Y. Zhang, Y. Epshteyn, R.R. Chromik, Dry sliding wear behaviour of cold-sprayed Cu-MoS2 and Cu-MoS2-WC composite coatings: The influence of WC, Tribol. Int. 123, 296-306 (2018). DOI: https://doi.org/10.1016/j.triboint.2017.12.015 30
- [26] R. Liu, J.H. Yao, Q.L. Zhang, M.X. Yao, R. Collier, Sliding wear and solid-particle erosion resistance of a novel high-tungsten stellite alloy, Wear 10, 012 (2014). DOI: https://doi.org/10.1016/j.wear.2014.10.012
- [27] M.C. Hsieh, Y.D. Ge, H. Kahn, G.M. Michal, F. Ernst, A.H. Heuer, Volatility diagrams for the Cr-O and Cr-Cl systems: application to removal of Cr2O3-rich passive films on stainless steel, Metall. Mater. Trans. B. 43, 1187-1201 (2012). DOI: https://doi.org/10.1007/s11663-012-9695-6
- [28] Y. Shinata, Accelerated oxidation rate of chromium induced by sodium chloride, Oxid. Met. 27, 315-332 (1987). DOI: https://doi.org/10.1007/BF00659274
- [29] B.P. Mohanty, D.A. hores, Role of chlorides in hot corrosion of a cast Fe-Cr-Ni alloy. Part I: experimental studies, Corros. Sci. 46, 2893-2907 (2004). DOI: https://doi.org/10.1016/j.corsci.2004.04.013
- [30] M.A. Unsitalo, P.M.J. Vuoristo, T.A. Mantyla, High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits, Corros. Sci. 46, 1311-1331 (2004). DOI: https://doi.org/10.1016/j.corsci.2003.09.026.
- [31] A. Zahs, M. Spiegel, H.J. Grabke, Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400-700℃, Corros. Sci. 42, 1093-1122 (2000). DOI: https://doi.org/10.1016/S0010-938X(99)00142-0
- [32] R. Bender, M. Schutze, The role of alloying elements in commercial alloys for corrosion resistance in oxidizing‐chloridizing atmospheres. Part I: literature evaluation and thermodynamic calculations on phase stabilities, Mater. Corros. 54, 567-586 (2003). DOI: https://doi.org/10.1002/maco.200390129
- [33] H.J. Grabke, M. Spiegel, A. Zahs, Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys, Mater. Res. 7, 89-95 (2004). DOI: https://doi.org/10.1590/S1516-14392004000100013
Uwagi
1. This work was sponsored by the Natural Science Foundation of Hebei Province (E2019202407), Science and Technology Research Project of Hebei Province Colleges and Universities (Grant No. QN2019028).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77737c2f-0e66-4e68-b4f4-9167678b0418