PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real Time Implementation of Amphibious Unmanned Aerial Vehicle System for Horticulture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automating the tasks that require manpower has been considered as an area of active research in science and technology. Challenges in designing such systems include accuracy in the parameters of performance, minimal hardware, cost-efficiency, and security. The efficiency of drones designed for replacing humans is often evaluated using their weight, flying time, and power consumption. Herein, the prototypebased Drone model has been designed and discussed for horticulture applications. In this model, a horticulture drone has been designed for structuring and cutting of plants in street interstates. This methodology focuses on automation engineering that is utilized for cutting the plants in less time and less power, thereby diminishing the contamination that may happen by utilizing fuels. The epic part of this plan includes the less weight drone predesigned using Computer-Aided Three-Dimensional Interactive Application (CATIA) V5 Software. The throttle for the motors is adjusted at 50% to get the required thrust for the Unmanned Aerial Vehicle (UAV) to fly. Experimental results show that the horticulture drone has comparatively more flying time and less power consumption.
Słowa kluczowe
EN
Rocznik
Strony
127--132
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab., wykr.
Twórcy
  • Department of EECE, GITAM University Bengaluru, India
autor
  • Department of EECE, GITAM University Bengaluru, India
  • Department of EECE, GITAM University Bengaluru, India
  • Department of Electronics Communication, Engineering, NITTTR, India
Bibliografia
  • [1] S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint,” pp. 2624–2661, 10 2016. [Online]. Available: http://doi.org/10.1109/COMST.2016.2560343
  • [2] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs,” IEEE Transactions on Wireless Communications, vol. 15, pp. 3949-3963, 6 2016. [Online]. Available: http://doi.org/10.1109/TWC.2016.2531652
  • [3] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-d placement of an unmanned aerial vehicle base station (uav-bs) for energy-efficient maximal coverage,” IEEE Wireless Communications Letters, vol. 6, pp. 434-437, 8 2017. [Online]. Available: http://doi.org/10.1109/LWC.2017.2700840
  • [4] U. R. Mogili and B. B. Deepak, “Review on application of drone systems in precision agriculture,” vol. 133. Elsevier B.V., 2018, pp. 502-509.
  • [5] T. Pobkrut, T. Eamsa-Ard, and T. Kerdcharoen, “Sensor drone for aerial odor mapping for agriculture and security services.” Institute of Electrical and Electronics Engineers Inc., 9 2016. [Online]. Available: http://doi.org/10.1109/ECTICon.2016.7561340
  • [6] D. Murugan, A. Garg, and D. Singh, “Development of an adaptive approach for precision agriculture monitoring with drone and satellite data,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, pp. 5322-5328, 12 2017. [Online]. Available: http://doi.org/10.1109/JSTARS.2017.2746185
  • [7] V. Puri, A. Nayyar, and L. Raja, “Agriculture drones: A modern breakthrough in precision agriculture,” Journal of Statistics and Management Systems, vol. 20, pp. 507-518, 7 2017. [Online]. Available: http://doi.org/10.1080/09720510.2017.1395171
  • [8] H. Saari, A. Akujärvi, C. Holmlund, H. Ojanen, J. Kaivosoja, A. Nissinen, and O. Niemeläinen, “Visible, very near ir and short wave ir hyperspectral drone imaging system for agriculture and natural water applications,” vol. 42. International Society for Photogrammetry and Remote Sensing, 10 2017, pp. 165-170. [Online]. Available: http://doi.org/10.5194/isprs-archives-XLII-3-W3-165-2017
  • [9] A. M. Jawad, H. M. Jawad, R. Nordin, S. K. Gharghan, N. F. Abdullah, and M. J. Abu-Alshaeer, “Wireless power transfer with magnetic resonator coupling and sleep/active strategy for a drone charging station in smart agriculture,” IEEE Access, vol. 7, pp. 139 839-139 851, 2019.
  • [10] T. Nagarjuna, K. Nehru, G. N. Prasad, and N. Menakadevi, “Smart sensor network based high quality air pollution monitoring system using labview,” International Journal of Online Engineering, vol. 13, pp. 79-87, 2017. [Online]. Available: http://doi.org/10.3991/ijoe.v13i08.7161
  • [11] T. Moribe, H. Okada, K. Kobayashl, and M. Katayama, “Combination of a wireless sensor network and drone using infrared thermometers for smart agriculture,” in 2018 15th IEEE Annual Consumer Communications Networking Conference (CCNC), 2018, pp. 1-2. [Online]. Available: http://doi.org/10.1109/CCNC.2018.8319300
  • [12] M. Liang and D. Delahaye, “Drone fleet deployment strategy for large scale agriculture and forestry surveying,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 4495-4500. [Online]. Available: http://doi.org/10.1109/ITSC.2019.8917235
  • [13] D. Murugan, A. Garg, T. Ahmed, and D. Singh, “Fusion of drone and satellite data for precision agriculture monitoring,” in 2016 11th International Conference on Industrial and Information Systems (ICIIS), 2016, pp. 910-914. [Online]. Available: http://doi.org/10.1109/ICIINFS.2016.8263068
  • [14] A. Agarwal, A. K. Singh, S. Kumar, and D. Singh, “Critical analysis of classification techniques for precision agriculture monitoring using satellite and drone,” in 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), 2018, pp. 83-88. [Online]. Available: http://doi.org/10.1109/ICIINFS.2018.8721422
  • [15] A. K. Saha, J. Saha, R. Ray, S. Sircar, S. Dutta, S. P. Chattopadhyay, and H. N. Saha, “Iot-based drone for improvement of crop quality in agricultural field,” in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018, pp. 612-615. [Online]. Available: http://doi.org/10.1109/CCWC.2018.8301662
  • [16] D. Radha, A. Kumar, M. Sabarimuthu, and N. Telagam, “Smart sensor network-based autonomous fire extinguish robot using iot,” International journal of online and biomedical engineering, vol. 17, pp. 101-110, 1 2021. [Online]. Available: http://doi.org/10.3991/ijoe.v17i01.19209
  • [17] T. Nagarjuna, N. Menakadevi, K. Nehru, and U. Somanaidu, “Cruise control of phase irrigation motor using sparkfun sensor,” International Journal of Online Engineering, vol. 13, pp. 192-198, 2017. [Online]. Available: http://doi.org/10.3991/ijoe.v13i08.7318
  • [18] K. D. Patel and S. K. Maurya, “Selection of bldc motor and propeller for autonomous amphibious unmanned aerial vehicle,” International Research Journal of Engineering and Technology, 2017.
  • [19] A. Fujimori, Y. uki Ukigai, S. Santoki, and S. Oh-hara, “Autonomous flight control system of quadrotor and its application to formation control with mobile robot,” vol. 51. Elsevier B.V., 1 2018, pp. 343-347. [Online]. Available: http://doi.org/10.1016/j.ifacol.2018.11.565
  • [20] P.-J. Bristeau, F. Callou, D. Vissière, and N. Petit, “The navigation and control technology inside the ar.drone micro uav,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1477-1484, 2011, 18th IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667016438188
  • [21] M. A. Kumar, N. Telagam, N. Mohankumar, K. M. Ismail, and T. Rajasekar, “Design and implementation of real-time amphibious unmanned aerial vehicle system for sowing seed balls in the agriculture field,” International Journal on Emerging Technologies, vol. 11, pp. 213-218, 2020. [Online]. Available: www.researchtrend.net
Uwagi
1. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
2. This study was supported by the TamilNadu State Council for Science and Technology (TNSCST) in the platform of the agriculture applications under “Science Stream”- Ref. No. ES-023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77712cff-5865-4e0c-a0f7-2e93d252d05d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.