Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates entropy generation rate in a temperature-dependent variable viscosity unsteady nanofluid flow past a convectively heated impulsively moving permeable cylindrical surface. The governing equations based on the modified Stokes first problem assumption are obtained and transformed using appropriate similarity variables into nonlinear ordinary differential equations. The numerical shooting method together with the Runge-Kutta Fehlberg integration scheme are employed to effectively solve the problem. The effects of related parameters on the nanofluid velocity, temperature, skin friction, Nusselt number, entropy generation rate and Bejan number are displayed graphically and quantitatively explained. It is found that an upsurge in nanoparticles volume fraction enhances the skin friction, Nusselt number, entropy production rate and the Bejan number.
Czasopismo
Rocznik
Tom
Strony
107--113
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha, 7395, South Africa
autor
- Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha, 7395, South Africa
autor
- Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha, 7395, South Africa
Bibliografia
- [1] Stokes, G.G. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, Part II, 9, 8–106. doi: 10.4236/ojapps.2014.43010
- [2] Choi, S.U.S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. American Society of Mechanical Engineers. Fluids Engineering Division, 66, 99–105.
- [3] Kuznetsov, A.V., & Nield, D.A. (2010). Natural convection boundary layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49, 243–247. doi: 10.1016/j.ijthermalsci.2013.10.007
- [4] Khan, W.A., & Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53(11), 2477–2483. doi: 10.1016/j.ijheatmasstransfer.2010.01.032
- [5] Abbas, Z., & Sheikh, M. (2017). Numerical study of homogeneous–heterogeneous reactions on stagnation point flow of ferrofluid with non-linear slip condition. Chinese Journal of Chemical Engineering, 25(1), 11–17. doi: 10.1016/j.cjche.2016.05.019
- [6] Makinde, O.D., Khan, W., & Khan, Z. (2017). Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Part E: Journal of Process Mechanical Engineering, 231(4), 695–703. doi:10.1177/0954408916629506
- [7] Rashidi, M., Ganesh, N.V., Hakeem, A.A., & Ganga, B. (2014). Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation. Journal of Molecular Liquids, 198, 234–238. doi: 10.1016/j.molliq.2014.06.037
- [8] Bejan, A. (1996). Entropy Generation Minimization. CRC Press: New York, NY, USA.
- [9] Woods, L.C. (1975). The Thermodynamics of Fluid Systems. Oxford University Press: Oxford, UK.
- [10] Bejan, A. (1980). Second law analysis in heat transfer. Energy,5(8–9), 720–732. doi: 10.1016/0360-5442(80)90091-2
- [11] Butt, A.S., Tufail, M.N., Ali, A., & Dar, A. (2019). Theoretical investigation of entropy generation effects in nanofluid flow over an inclined stretching cylinder. International Journal of Exergy, 28(2), 126–157. doi: 10.1504/IJEX.2019.097976
- [12] Rana, P., & Shukla, N. (2018). Entropy generation analysis for non-similar analytical study of nanofluid flow and heat transfer under the influence of aligned magnetic field. Alexandria Engineering Journal, 57, 3299–3310. doi: 10.1016/j.aej.2017.12.007
- [13] Freidoonimehr, F., & Rahimi, A.B. (2017). Exact solution of entropy generation for MHD nanofluid flow induced by a stretching/shrinking sheet with transpiration: dual solution. Advances in Powder Technology, 28(2), 671–685. doi: 10.1016/j.apt.2016.12.005
- [14] Das, S., Chakraborty, S., Jana, R.N., & Makinde, O.D. (2016). Entropy analysis of nanofluid flow over a convectively heated radially stretching disk embedded in a porous medium. Journal of Nanofluids, 5(1), 48–58. doi: 10.1166/jon.2016.1184
- [15] Khan, M.N., Ullah, N., & Nadeem, S. (2021). Transient flow of Maxwell Nanofluid Over a Shrinking Surface: Numerical Solutions and Stability Analysis. Surfaces and Interfaces, 22, 100829.doi: 10.1016/j.surfin.2020.100829
- [16] Zahmatkesh, R., Mohammadiun, H., Mohammadiun, M., & Dibaei-Bonab, M.H. (2019). Investigation of entropy generation in nanofluid’s axisymmetric stagnation flow over a cylinder with constant wall temperature and uniform surface suction-blowing. Alexandria Engineering Journal, 58, 1483–1498. doi: 10.1016/j.aej.2019.12.003
- [17] Muhammad, A., & Makinde, O.D. (2019). Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface. Defect and Diffusion Forum, 374, 29–46. doi: 10.4028/www.scientific.net/DDF.374.29
- [18] Das, S., Chakraborty, S., Jana, R.N., & Makinde, O.D. (2015). Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Applied Mathematics and Mechanics, 36(12), 1593–1610. doi:10.1007/s10483-015-2003-6
- [19] Agrawal, R., & Kaswan, P. (2022). Minimization of the entropy generation in MHD flow and heat transfer of nanofluid over a vertical cylinder under the influence of thermal radiation and slip condition. Heat Transfer, 51, 1790–1808. doi: 10.1002/htj.22375
- [20] Kumar, M., & Mondal, P.K. (2022). Irreversibility analysis of hybrid nanofluid flow over a rotating disk: Effect of thermal radiation and magnetic field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 635, 128077. doi: 10.1016/j.colsurfa.2021.128077
- [21] Mandal, G., & Pal, D. (2021). Entropy generation analysis of radiated magnetohydrodynamic flow of carbon nanotubes nanofluids with variable conductivity and diffusivity subjected to chemical reaction. Journal of Nanofluids, 10, 491–505. doi: 10.1166/jon.2021.1812
- [22] Ha, S.N. (2001). A nonlinear shooting method for two-point boundary value problems. International Journal of Computers and Mathematics with Applications, 42(10), 1411–1420. doi:10.1016/S0898-1221(01)00250-4
- [23] Munawar, S., Saleem, N., & Mehmood, A. (2016). Entropy production in the flow over a swirling stretchable cylinder. Thermophysics and Aeromechanics, 23(3), 435–444. doi: 10.1134/S0869864316030136
- [24] Osborne, M.R. (1969). On shooting methods for boundary value problems. Journal of Mathematical Analysis and Applications,27(1). doi: 10.1137/0722018
- [25] Das, K. (2013). Mixed convection stagnation point flow and heat transfer of Cu-water nanofluids towards a shrinking sheet. Heat Transfer, 42(3). doi: 10.1002/htj.21037
- [26] Tie, P., Li, Q., & Xuan, Y. (2014). Heat transfer performance of Cu-water nanofluids in the jet arrays impingement cooling system. International Journal of Thermal Sciences, 77, 199–205.doi: 10.1016/j.ijthermalsci.2013.11.007
Uwagi
[1] This work is based on the research supported wholly/in part by the National Research Foundation of South Africa (Grant Numbers 150670).
[2] Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-776c0a35-cdcb-4041-87f8-c15fa85ccbce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.