PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the inhibitory-bactericidal effect of amidoamine-based inorganic complexes against microbiological and atmospheric corrosion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the process, inorganic complexes of amidoamines obtained from the interaction of natural petroleum acid and oleic acids with diethylenetriamine have been developed and their effectiveness as inhibitor-bactericides has been investigated. The effect of the synthesized reagents on the kinetics of the corrosion process of steel and the activity of sulphate-reducing bacteria in 3% NaCl solution saturated with CO2 and in the biphasic water–isopropyl alcohol medium with H2S dissolved has been analyzed. The thermodynamic and kinetic parameters of the corrosion process were calculated. The adsorption of the complexes was investigated using the Langmuir isotherm and the correlation constant was determined. State of the metal surface was investigated by SEM method in CO2 and H2S media, with and without inhibitors, and the metal surface contact of complexes was studied by computer molecular simulation.
Słowa kluczowe
Rocznik
Strony
29--37
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Institute of Petrochemical Processes named after acad. Y.H. Mamedaliyev, Azerbaijan National Academy of Sciences, , AZ1025, Khojali ave., 30, Baku, Azerbaijan
autor
  • Institute of Petrochemical Processes named after acad. Y.H. Mamedaliyev, Azerbaijan National Academy of Sciences, , AZ1025, Khojali ave., 30, Baku, Azerbaijan
  • Institute of Petrochemical Processes named after acad. Y.H. Mamedaliyev, Azerbaijan National Academy of Sciences, , AZ1025, Khojali ave., 30, Baku, Azerbaijan
  • Institute of Petrochemical Processes named after acad. Y.H. Mamedaliyev, Azerbaijan National Academy of Sciences, , AZ1025, Khojali ave., 30, Baku, Azerbaijan
  • Institute of Petrochemical Processes named after acad. Y.H. Mamedaliyev, Azerbaijan National Academy of Sciences, , AZ1025, Khojali ave., 30, Baku, Azerbaijan
Bibliografia
  • 1. Perez, N. (2010). Electrochemistry and corrosion science. Springer, India, Pvt. Ltd, New Dehli.
  • 2. Trabenelli, G. & Mansfeld, F. (1987). Corrosion Mechanisms, Marcel Dekker, New York. p. 109.
  • 3. Bousskri, A., Anejjar, A., Messali, M., Salghi, R., Benali, O., Karzazi, Y.,Jodeh, S., Zougagh, M., Ebenso, Eno, E. & Hammoutiet, B., (2015). Corrosion inhibition of carbon steel in aggressive acidic media with 1-(2-(4-chlorophenyl)-2-oxoethyl)pyridazinium bromide. J. Mol. Liq., 211 (Supplement C):1000–1008. DOI: 10.1016/j.molliq.2015.08.038.
  • 4. Sliem, M.H., Afifi , M., Bahgat Radwan, A., Fayyad,E.M., Shibl, M.F., Heakal, F.E., & Abdullah, A.M. (2019). AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for Carbon Steel in HCl solution. Scientifi c reports, 9(1), 2319. DOI: 10.1038/s 41598-018-37254-7.
  • 5. Aghazada, Y.J., Abbasov, V.M., Abdullayev, S.E., Hasanov, E.K. & Yolchuyeva, U.J. (2019). Characterisation of conservative liquids based on liquid rubber, the salts of the natural petroleum acids and nitro compounds-C14H28. // Revue Roumaine de Chimie http://web.icf.ro/rrch/2019, vol. 64(2), pp.125–132. DOI: 10.33224/rrch/2019.64.2.02.
  • 6. Aghazada, Y.J., Abbasov, V.M., Abdullayev, S.E., Hasanov, E.K. & Suleymanova, S.S. (2017).The research of anticorrosive properties of various compositions on samples of standard metals. Polish J. Chem. Technol., Vol. 19, No. 4, 2017 pp. 80–86, DOI: 10.1515/pjct-2017-0071.
  • 7. Parul Dohare K.R.A., Quraishi M.A. & Obot I.B. (2017). Pyranpyrazole derivatives as novel corrosion inhibitors for mild steel useful for industrial pickling process: Experimental and Quantum Chemical study. J. Ind. Eng. Chem., 52, 197–210. DOI: 10.1016/j.jiec.2017.03.044.
  • 8. Kumar, R., et al. (2017). Corrosion inhibition performance of chromone-3-acrylic acid derivatives for low alloy steel with theoretical modeling and experimental aspects. J. Mol. Liq., 243 (Supplement C):439–450. DOI: 10.1016/j.molliq.2017.08.048.
  • 9. Esmaeili, N., Neshati, J. & Yavari, I. (2015). Corrosion inhibition of new thiocarbohydrazides on the carbon steel in hydrochloric acid solution. J. Ind. Eng. Chem., 22, 159–163. DOI: 10.1016/j.jiec.2014.07.004.
  • 10. Zaafarany, I.A. (2014).Corrosion inhibition of 1018 carbon steel in hydrochloric acid using Schiff base compounds. International J. Corros. Scale Inhibit., 3, 12–27. DOI: 10.17675/2305-6894-2014-3-1-012-027.
  • 11. Bouklah, M., Hammouti, B., Lagrenée, M., Bentiss, F. (2006).Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros. Sci., 48(9), 2831–2842. DOI: 10.1016/j.corsci.2005.08.019.
  • 12. Hegazy, AYE-EMA, El-Shafaie, M., Berry, K.M. (2016). Novel cationic surfactants for corrosion inhibition of carbon steel pipelines in oil and gas wells applications. J. Mol. Liq., 214, 347–356. DOI: 10.1016/j.molliq.2015.11.047.
  • 13. Zhu, MLFY, Cho, J.H. (2016). Integrated evaluation of mixed surfactant distribution in water-oil-steel pipe environments and associated corrosion inhibition efficiency. Corros. Sci., 110, 213–227. DOI: 10.1016/j.corsci.2016.04.043.
  • 14. Aiad, I.A., Tawfi k, S.M., Shaban, S.M. et al. (2014). Enhancing of Corrosion Inhibition and the Biocidal Effect of Phosphonium Surfactant Compounds for Oil Field Equipment. J. Surfact Deterg 17, 391–401, DOI: 10.1007/s11743-013-1512-y.
  • 15. Shaban, S.M., Aiad, I., Moustafa, H.Y. & Hamed. A. (2015). Amidoamine Gemini surfactants based dimethylamino propyl amine: Preparation, characterization and evaluation as biocide. J. Mol. Liq. 212, 907–914, DOI: 10.1016/j.molliq.2015.10.048.
  • 16. A. G1-90, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (1999).
  • 17. Aslam, R., Mobin, M., Aslam, J., Lgaz, H. (2018). Sugar based N,N′-didodecyl-N,N′digluconamide-ethylenediamine gemini surfactant as corrosion inhibitor for mild steel in 3.5% NaCl solution-effect of synergistic KI additive. Scientific Reports. 8(1), 3690. DOI: 10.1038/s41598-018-21175-6.
  • 18. Aloui, S., Forsal, I., Sfaira, M., Touhami, Ebn. M., Taleb, M., Filali Baba, M. & Daoudi, M. (2009). New mechanism synthesis of 1,4-benzothiazine and its inhibition performance on mild steel in hydrochloric acid. Port. Electrochim. Acta. 27, 599–613. DOI: 10.4152/pea.200905599.
  • 19. Keles, H., Keles, M., Dehri, I. & Serindag, O. (2008). The inhibitive effect of 6-amino-m-cresol and its Schiff base on the corrosion of mild steel in 0.5 M HCI medium. Mater. Chem. Phys. 112, 173–179. DOI: 10.1016/j.matchemphys.2008.05.027.
  • 20. Valcarce, M.B. & Vázquez, M. (2009). Carbon steel passivity examined in solutions with a low degree of carbonation: The effect of chloride and nitrite ions. Mater. Chem. Phys. 115(1), 313–321. DOI: 10.1016/j.matchemphys.2008.12.007.
  • 21. Bahgat, Radwan A, Sliem M.H., Okonkwo, P.C., Shibl, M.F. & Abdullah, A.M. (2017). Corrosion inhibition of API X120 steel in a highly aggressive medium using stearamidopropyl dimethylamine. J. Mol. Liq. 236 (Supplement C), 220–231. DOI: 10.1016/j.molliq.2017.03.116.
  • 22. Shaban, S.M., El-Sherif, R.M. & Fahim, M.A. (2018). Studying the surface behavior of some prepared free hydroxyl cationic amphipathic compounds in aqueous solution and their biological activity. J. Mol. Liq. 252, 40–51. DOI: 10.1016/j.molliq.2017.12.105.
  • 23. Zarrok, H., Zarrouk, A., Hammouti, B., Salghi, R., Jama, C. & Bentiss, F. (2012). Corrosion control of carbon steel in phosphoric acid by purpald – Weight loss, electrochemical and XPS studies. Corros. Sci. 64, 243–252. DOI: 10.1016/j.corsci.2012.07.018.
  • 24. Zarrouk, A., Ramli, Y., Zarrok, H. & Bouachrine, M. (2016). Inhibitive properties, adsorption and theoretical study of 3,7-dimethyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one as efficient corrosion inhibitor for carbon steel in hydrochloric acid solution. J. Mol. Liq., 222 (Supplement C), 239–252. DOI: 10.1016/j.molliq.2016.07.046.
  • 25. Akid, R., Kaczerewska, O., Leiva-Garcia, R. & Brycki, B. (2018). Effectiveness of O-bridged cationic gemini surfactants as corrosion inhibitors for stainless steel in 3 M HCl: Experimental and theoretical studies. J. Mol. Liq. 249, 1113–1124. DOI: 10.1016/j.molliq.2017.11.142.
  • 26. Bouammali, H., Jama, C., Bekkouch, K., Aouniti, A., Hammouti, B. & Bentiss, F. (2015). Anticorrosion potential of diethylenetriaminepentakis (methylphosphonic) acid on carbon steel in hydrochloric acid solution. J. Ind. Eng. Chem. 26, 270–276. DOI: 10.1016/j.jiec.2014.11.039.
  • 27. Prajila, M. & Joseph, A. (2017). Inhibition of mild steel corrosion in hydrochloric using three different 1,2,4-triazole Schiff’s bases: A comparative study of electrochemical, theoretical and spectroscopic results. J. Mol. Liq., 241 (Supplement C),1–8. DOI: 10.1016/j.molliq.2017.05.136.
  • 28. Kumar, R., Chopra, R. & Singh, G. (2017). Electrochemical, morphological and theoretical insights of a new environmentally benign organic inhibitor for mild steel corrosion in acidic media. J. Mol. Liq. 241 (Supplement C), 9–19. DOI: 10.1016/j.molliq.2017.05.130.
  • 29. Yadav, M., Sarkar, T.K. & Purkait, T. (2015). Amino acid compounds as eco-friendly corrosion inhibitor for N80 steel in HCl solution: Electrochemical and theoretical approaches. J. Mol. Liq., 212 (Supplement C), 731–738. DOI: 10.1016/j.molliq.2015.10.021.
  • 30. Tang, Y., et al. (2013). Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies. Corros. Sci. 74, 271–282. DOI: 10.1016/j.corsci.2013.04.053.
  • 31. Mendonca, G.L.F., Costa, S.N., Freire, V.N., Casciano, P.N.S., Correia, A.N. & de Lima-Neto, P. (2017). Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modeling methods. Corros. Sci. 115, 41–55. DOI: 10.1016/j.corsci.2016.11.012.
  • 32. Solmaz, R., Kardas, G., Yazici, B. & Erbil, M. (2008). Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4- thiadiazole on mild steel in hydrochloric acid media. Colloids Surf., A 312, 7–17. DOI: 10.1016/j.colsurfa.2007.06.035.
  • 33. Yadav, M., Sinha, R.R., Sarkar, T.K., Bahadur, I. & Ebenso, E.E. (2015).Application of new isonicotinamides as a corrosion inhibitor on mild steel in acidic medium: Electrochemical, SEM, EDX, AFM and DFT investigations. J. Mol. Liq. 212 (Supplement C), 686–698. DOI: 10.1016/j.molliq.2015.09.047.
  • 34. Srivastava, V., et al. (2017). Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: Experimental, DFT and MD studies. J. Mol. Liq. 244 (Supplement C), 340–352. DOI: 10.1016/j.molliq.2017.08.049.
  • 35. Stansbury, R.A.B.E.E. (2000). Fundamentals of electrochemical corrosion. ASM Int, 271–277.
  • 36. Yadav, M., Gope, L., Kumari, N. & Yadav, P. (2016). Corrosion inhibition performance of pyranopyra- zole derivatives for mild steel in HCl solution: Gravimetric, electrochemical and DFT studies. J. Mol. Liq. 216 (Supplement C), 78–86. DOI: 10.1016/j.molliq.2015.12.106.
  • 37. Jokar, T.S.F.M. & Ramezanzadeh, B. (2016). Electrochemical and surface characterizations of Morus alba Pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl. J. Taiwan Inst. Chem. Eng. 63, 436–452. DOI: 10.1016/j.jtice.2016.02.027.
  • 38. Kowsari, S.Y.A.E., et al. (2016). In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution. Corros. Sci., 112,73–85. DOI: 10.1016/j.corsci.2016.07.015.
  • 39. Verma, C., Ebenso, E.E. & Vishal, Y.M.A., Quraishi, Dendrimers: A new class of corrosion inhibitors for mild steel in 1M HCl: Experimental and quantum chemical studies. J. Mol. Liq. 224 (Part B), 1282–1293. DOI: 10.1016/j.molliq.2016.10.117.
  • 40. Eghbali, F., Moayed, M.H., Davoodi, A. & Ebrahimi, N., (2011). Critical pitting temperature (CPT) assessment of 2205 duplex stainless steel in 0.1 M NaCl at various molybdate concentrations Corros. Sci. 53, 513. DOI: 10.1016/j.corsci.2010.08.008.
  • 41. Hachelef, H., Benmoussat, A., Khelifa, A. & Meziane, M. (2016). Study of the propolis extract as a corrosion inhibitor of copper alloy in ethylene glycol / water 0.1 m NaCl. J. Fundam. Appl. Sci., 9(2), 650–668. DOI: D10.4314/jfas.v9i2.3.
  • 42. Solmaz, R. (2014).“Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-dimethylaminobenzylidene) rhodanine,” Corrosion Science, 79, pp. 169–176. DOI: 10.1016/j.corsci.2013.11.001.
  • 43. Ghazoui, A., Benchat, N., El-Hajjaji, F., Taleb, M., Rais, Z., Saddik, R., Elaatiaouim A. & Hammouti, B. (2017). The study of the effect of ethyl (6-methyl- 3-oxopyridazin-2-yl) acetate on mild steel corrosion in 1 M HCl. J. Alloys Compd. 693, 510–517. DOI: 10.1016/j.jallcom.2016. 09.191.
  • 44. Abd El-Lateef, H.M., Abu-Dief, A.M., Abdel-Rahman, L.H., Sanudo, E.C. & Aliaga-Alcalde, N. (2015). Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. J. Electroanal. Chem. 743, 120–133. DOI: 10.1016/j.jelechem. 2015.02.023.
  • 45. Lorenz, W.J. & Heusler, K.E. (1987).“Anodic Dissolution of Iron Group Metals,” in Corrosion Mechanisms, F. Mansfeld, Ed., pp. 1–83, Marcel Dekker, New York, NY, USA.
  • 46. Laidler, K.J, Reaction Kinetics, (1963). Vol. 1, 1st ed., Pergamon Press, New York.
  • 47. Shaban, S.M., Fouda, A.S., Elmorsi, M.A., Fayed, T. & Azazy, O. Adsorption and micellization behavior of synthesized amidoamine cationic surfactants and their biological activity. J. Mol. Liq. 216, 284–292. DOI: 10.1016/j.molliq.2015.12.111.
  • 48. Muralisankar, M., Sreedharan, R., Sujith, S., Bhuvanesh, N.S.P. & Sreekanth, A. (2017). N(1)-pentyl isatin-N(4)-methylN(4)-phenyl thiosemicarbazone (PITSc) as a corrosion inhibitor on mild steel in HCl. J. Alloys Compd. 695, 171–182. DOI: 10.1016/j.jallcom. 2016.10.173.
  • 49. Salarvand, Z., Amirnasr, M., Talebian, M., Raeissi, K. & Meghdadi, S. (2017). Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenylbenzothiazole derivatives: experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corros. Sci. 114, 133–145. DOI: 10.1016/j.corsci.2016.11.002.
  • 50. Fouda, A.S., Elmorsi, M.A. & Abou-Elmagd, B.S. (2017). Adsorption and inhibitive properties of methanol extract of Eeuphorbia Heterophylla for the corrosion of copper in 0.5 M nitric acid solutions. Polish J. Chem. Technol., vol. 19, No. 1, pp. 95–103 DOI: 10.1515/pjct-2017-0014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7764a85a-8db9-4fe1-a48b-f09f7a24b4b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.