PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Description of strength of wood composite in compound state of load

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
All constructions are subject to the most compound loads and therefore a suitable effort hypothesis should be used for their calculation. For anisotropic materials, a hypothesis should be used to describe the properties of such materials. In the work have been shown the strength of the layers composite on the example of construction wood in a compound stress state. Wood composite is an orthotropic material. Wood is composed of alternating layers of soft wood and hard wood. Single layers are monotropic material. The use of a stress hypothesis, which describes the strength of an orthotropic material, requires will make an investigation. Studies is purposed to determine the tensile strength along and across the fibres. The compressive strengths along and across the fibres and the shear strength. Particularly the determination of shear strength requires special tooling so that in the case of flat samples in the measuring part it is possible to determine the shear stresses. Therefore, a research stand was designed and constructed. Known stress hypotheses for anisotropic materials have been analysed. The analysis showed that the strength of the wood composite could be described by the Tai-Wu stress hypothesis. Based on the results of the research, numerical calculations were performed. Calculations allowed determining the distribution of stresses in the sample measuring part. The results tests and numerical calculations have shown that obtaining a homogeneous stress (shear) condition for anisotropic materials is very difficult. Wood belongs to materials whose mechanical properties depend on many parameters, so the description of the effort of this material is a compound issue. Studies have shown that wood reinforcement by polymer saturation is best suited to the compressed loaded structures.
Twórcy
autor
  • Gdynia Maritime University Faculty of Marine Engineering Morska Street 81-87, 81-225 Gdynia, Poland tel.: 694-476-390, fax: +48 58 6901399
Bibliografia
  • [1] Ashby, M. F., Jones, D. H., Engineering Materials,. part I, WNT Warsaw 1995.
  • [2] Aškenazi, E. K., Procnost’ anizotropnyh drevesnyh i sinteticeskih materialov, Lesnaja promyslennost’, Moskva 1966.
  • [3] Broughton, W. R., Kumosa, M., Hill, D., Analysis of the Iosipescu shear test applied to unidirectional carbon-fiber reinforced composites, Comp. Science Tech., Vol. 38, pp. 299-325, 1990.
  • [4] Dąbrowski, H., Introduction to Composite Mechanics, Wroclaw University of Technology, Wroclaw 1989.
  • [5] Kyzioł, L., Analysis of properties the construction wood of surface saturated polymer MM, Naval Academy in Gdynia, No. 156 A, 2004.
  • [6] Kyzioł, L., Influence of saturation of pine wood with methylmethacrylate on its mechanical properties, Conference Materials, Polymers and Structural Composites, Silesian University of Technology, 195-202, Ustron 1998.
  • [7] Kyzioł, L., Szpakowski, S., Influence de l’eau de mer et de la corrosion atmospheric sur des composites bois polymers, Revue du Genie Maritime, No. 10, pp. 16-17, Canada 1998.
  • [8] Kyzioł, L., Modified wood – a promising material for shipbuilding, Polish Maritime Research, pp. 6-10, 1999.
  • [9] Kyzioł, L., Distribution of Methylmethacrylate concentration in a porous material, Marine Technology Transactions, Vol. 10, pp. 175-190, 1999.
  • [10] Kyzioł, L., Shear stress in measuring section of the sample with modified wood, Journal of KONES Powertrain and Transport, pp. 193-198, 2016.
  • [11] Malmaister, A. K., Geometrija teorij pročnosti, Mechanika polimerov, Vol. 4, pp. 519-534, 1966.
  • [12] Ochelski, S., Experimental methods of composite mechanics, WNT, Warsow 2004.
  • [13] Pierron, F., Vautrin, A., Measurement of the in-plane shear strengths of unidirectional composites with the Iosipescu test, Composites Science and Technology, Vol. 57, pp. 1653-1660, 1997.
  • [14] Tsai, S. W., Wu, E. M., A general theory of strength for anisotropic materials, J. Composite Materials, Vol. 5, No. 7, pp. 125-143, 1971.
  • [15] Wang, Ch. H., Chalkley, P., Plastic yielding of film adhesive under multiaxial stresses, Inter. J. Adhesion Adhesives, Vol. 20, pp. 155-164, 2000.
  • [16] Wilczyński, A. P., Polymeric fiber composites, WNT, Warszawa 1996.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7763fc4e-37d7-4517-ad51-8e673fbbe549
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.