PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Different Additions of Carbon Dioxide on Growth, Lipids, Carotenoids and Chlorophyll-a of Chaetoceros calcitrans

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global warming gives phytoplankton a significant role in reducing carbon. C. calcitras is a phytoplankton which utilizes carbon dioxide for growth and the formation of secondary metabolites in order to survive. The purpose of this study was to determine the effect of differences in duration on growth, lipid content, carotenoids and chlorophyll-a in C. calcitrans and to determine the optimal duration. An experimental method with statistical analysis using ANOVA was used in this study. The treatments implemented were the addition of carbon dioxide for 0, 2, 4, 6, 8, 10, 12, and 14 minutes with a volume of carbon dioxide addition of 3 bps. The results showed that the addition of carbon dioxide had a significant effect (P<0.05) on the value of lipids, growth, carotenoids and chlorophyll-a. The highest density value was obtained in Treatment for 2 minutes to increase growth with the highest total value of 2,927,500 cells/ml. The best treatment to increase lipids was Treatment for 12 minutes with lipid content of 63.33% and lipid productivity of 1.82 mg/l/day. The best treatment to increase carotenoid content was Treatment for 4 minutes with carotenoid content of 2.20 g/mL and chlorophyll-a content of 1.4431 g/mL. Optimal treatment differences to obtain the highest value of each parameter differ from each other, depending on the synthesis and physiological processes of C. calcitrans.
Słowa kluczowe
Rocznik
Strony
289--298
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Program Study of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Kampus C Jalan Mulyorejo, Surabaya 60115 East Java, Indonesia
  • Program Study of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Kampus C Jalan Mulyorejo, Surabaya 60115 East Java, Indonesia
  • Program Study of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Kampus C Jalan Mulyorejo, Surabaya 60115 East Java, Indonesia
autor
  • Program Study of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Kampus C Jalan Mulyorejo, Surabaya 60115 East Java, Indonesia
  • Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Kampus C Jalan Mulyorejo, Surabaya 60115 East Java, Indonesia
  • Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Kampus C Jalan Mulyorejo, Surabaya 60115 East Java, Indonesia
  • Program Study of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Jl. Veteran Malang 65145, Indonesia
  • Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16a, 70-383 Szczecin, Poland
autor
  • Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
Bibliografia
  • 1. Abraham, C., Radhakrishnan, C.K. 2012. Effects of monospecific and mixed algal diets on survival, development and biochemical composition of Penaeus monodon larvae (Doctoral dissertation, Cochin University Of Science And Technology).
  • 2. Adams, C., Bugbee, B. 2014. Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon. Journal of applied phycology, 26(3), 1351–1357.
  • 3. Arbit, N.I.S., Omar, S.B.A., Tuwo, O., Eddy, S. 2018. Effect of global warming scenarios on carotenoid pigments Gracilaria changii. Int J Environ Agriculture and Biotechnol, 3(6), 2039–2042.
  • 4. Arifin, C.A., Yudoyono G. 2013. Fiksasi CO2 oleh Chlorella vulgaris sebagai medium pengkonversi dalam bubble column reactors. Jurnal Sains dan POM ITS, 2(1), 4–8. (in Indonesian).
  • 5. Arsad, S., Mulasari, Y.W., Sari, N.Y., Lusiana, E.D., Risjani, Y., Musa, M., Mahmudi, M., Prasetiya, F.S. and Sari, L.A. 2022. Microalgae diversity in several different sub-habitats. Global Journal of Environmental Science and Management, 8(4), 561–574.
  • 6. Aryanto. 2017. Pengaruh penambahan CO2 terhadap pertumbuhan mikroalga Chlorella sp. Undergraduate Thesis, Institut Pertanian Bogor, Bogor. (in Indonesian)
  • 7. Azmi, K.A., Arsad, S. and Sari, L.A. 2020, February. The effect of commercial nutrients to increase the population of Skeletonema costatum on laboratory and mass scales. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 441(1), 012039.
  • 8. Balarumugan, G., Anand, B. G.., Prakash, S., Karthikeya,n G., Balaji, R., Sathish., Kumar, C. and Santhose, I. 2013. Pigment Producy Capacity of Saline Tolerant Microalgae C. calcitrans, Chlorella salina, Isochrysis galbana, Tetraselmis gracilis and its antimicrobial activity : and comporative study. Journal of Microbiology and Biotechnology Research, 3(1), 1–7.
  • 9. Choi, W., Kim, G. and Lee, K. 2012. Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp. Bioresource technology, 120, 295–299.
  • 10. Cornwall, C., Hepburn, C.D., Pritchard, D., McGraw, C., Hunter, K., Hurd, C.L. 2012. Carbon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification. Phycol, 48, 137−144.
  • 11. Diana, A., Zahro, N., Sari, L.A., Arsad, S., Pursetyo, K.T., Cahyoko, Y. 2021. Monitoring of phytoplankton abundance and chlorophyll-a content in the estuary of Banjar Kemuning River, Sidoarjo Regency, East Java. Journal of Ecological Engineering, 22(1).
  • 12. Duan, X., Ren, G.Y., Liu, L.L., Zhu, W.X. 2012. Salt-induced osmotic stress for lipid overproduction in batch culture of Chlorella vulgaris. Afr J Biotechnol, 11(27), 7072–7078.
  • 13. Dyachok, V., Mandryk, S., Huhlych, S. 2021. About the Optimal Ratio Inhibitor and Activators of Carbon Dioxide Sorption Process by Using Chlorophyll-synthesizing Chlorella microalgae. Journal of Ecological Engineering, 22(5).
  • 14. Dyachok, V., Venher, L. and Huhlych, S., 2022. The Biomethanization Gas Purification of Using Chlorophyll-Synthesizing Microalgae. Journal of Ecological Engineering, 23(9), 259–264.
  • 15. Firdaus, M.R., Wijayanti, L.A.S. 2019. Fitoplankton dan siklus karbon global. Oseana, 44(2), 35–48.
  • 16. Guo, W., Cheng, J., Liu, S., Feng, L., Su, Y., Li, Y. 2020. A novel porous nickel-foam filled CO2 absorptive photobioreactor system to promote CO2 conversion by microalgal biomass. Science of The Total Environment, 713, 136593.
  • 17. Hasanudin, M. 2012. Pengaruh perbedaan intensitas cahaya terhadap pertumbuhan dan kadar lipid mikroalga Scenedesmus sp. yang dibudidayakan pada limbah cair tapioka. Undergraduate Thesis, Universitas Islam Negeri Maulana Malik Ibrahim, Malang. (in Indonesian)
  • 18. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirard, Mi, Posewitz, M., Seibert, M., Darzins, A. 2008. Microalgal triacyglycerols as feedstocks for biofuel production : Perspectives and advances. The Plant Journal, 54(4), 621-639.
  • 19. Jawa, I.U., Ridlo, A., Djunaedi, A. 2014. Kandungan total lipid Chlorella vulgaris yang dikultur dalam media yang diinjeksi CO2. Journal of Marine Research, 3(4), 578–585. (in Indonesian)
  • 20. Kawaroe, M., Sunnudin, A., Augustine, D., Lestari, D.Z. 2016. The effect CO2 injection on macroalgae Gelidium latifolium Biomassa Growth rate and Carbohidrate Content. Ilmu kelautan, 21(2), 85–92.
  • 21. Khairy, H.M., Shaltout, N.A., El Naggar M.F., El-Naggar, N.A.b2014. Impact of elevated CO2 concentrations on the growth and ultrastructure of non-calcifying marine diatom (Chaetoceros gracilis F.Schu ̈tt). Egyptian J.of Aquatic Research.
  • 22. Kusumaningrum, H.P., Zainuri, M. 2013. Aplikasi pakan alami kaya karotenoid untuk post larva Penaeus monodon Fab. J Ilmu Kelautan, 18(3), 143–149. (in Indonesian)
  • 23. Kwangdinata, R.I., Raya, Z.M. 2013. Produksi bio-diesel dari lipid fitoplankton Nannochloropsis sp. melalui metode ultrasonik. Marina Chimica Acta, 4(2), 28–36. (in Indonesian)
  • 24. Lee, T.H., Wang, H.Y. 2014. Simultaneous quafication of celullar lipids and carotenoids Chorellla vulgaris using raman spectrometry. J Energy Procedia, 61, 829–833.
  • 25. Li, Y., Liu, F., Cai, J., Huang, X., Lin, L., Lin, Y., Yang, H. and Li, S. 2019. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications. Microchemical Journal, 147, 1038–1047.
  • 26. Liu, N., Guo, B., Cao, Y., Wang, H., Yang, S., Huo, H., Kong, W., Zhang, A. and Niu, S. 2021. Effects of organic carbon sources on the biomass and lipid production by the novel microalga Micractinium reisseri FM1 under batch and fed-batch cultivation. South African Journal of Botany, 139, 329–337.
  • 27. Menezes, E.G.O., Barbosa, J.R., Pires, F.C.S., Ferreira, M.C.R., e Silva, A.P.D.S., Siqueira, L.M.M., de Carvalho Junior, R.N. 2022. Development of a new scale-up equation to obtain Tucumã-of-Pará (Astrocaryum vulgare Mart.) oil rich in carotenoids using supercritical CO2 as solvent. The Journal of Supercritical Fluids, 181, 105481.
  • 28. Mouahid, A., Seengeon, K., Martino, M., Crampon, C., Kramer, A. and Badens, E. 2020. Selective extraction of neutral lipids and pigments from Nan-nochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. The Journal of Supercritical Fluids, 165, 104934.
  • 29. Musa, M., Arsad, S., Kilawati, Y., Hartiono, R.F., Fajrin, I., Sari, L.A., Prasetiya, F.S. 2020. Phycoremediation of mercury in the aquatic environment. Environment Protection Engineering, 46(4).
  • 30. Nur, M.M.A. 2014. Efek bikarbonat, besi, dan garam terhadap produktivitas lipid Chlorella sp. yang diekstrak dengan metode osmotik shock. Eksergi, 11(2), 19–23. (In Indonesian)
  • 31. Nurmalitasari, E., Ridlo, A., Sunaryo. 2014. Injeksi karbon dioksida (CO2) pada media pemeliharaan terhadap biomassa dan kandungan total lipid mikroalga Tetraselmis chuii. J Marine Research, 3(3), 388–394. (in Indonesian)
  • 32. Obeid, S., Beaufils, N., Peydecastaing, J., Camy, S., Takache, H., Ismail, A. and Pontalier, P.Y. 2022. Microalgal fractionation for lipids, pigments and protein recovery. Process Biochemistry, 121, 240–247.
  • 33. Odunlami, O.A., Agboola, O., Odiakaose, E.O., Olabode, O.O., Babalola, O., Abatan, O.G., Owoicho, I. 2022. Treatment of Contaminated Water from Niger Delta Oil Fields with Carbonized Sisal Fibre Doped with Nanosilica from Ofada Rice Husk. Journal of Ecological Engineering, 23(9), 297–308.
  • 34. Prasetyo W.D. 2017. Pengaruh pemberian ekstrak Chaetoceros calcitrans terhadap histopatologi organ usus pada ikan mas (Cyprinus carpio) yang diinfeksi bakteri Aeromonas salmonicida. Undergraduate Thesis, Universitas Brawijaya, Malang. (in Indonesian)
  • 35. Pratama, N.A., Rahardja, B.S., Sari, L.A. 2020, February. The effect of density as Skeletonema costatum bioremediation agent of copper (Cu) heavy metal concentration. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 441(1), 012029.
  • 36. Prieto, A., Cañavate, J.P. and García-González, M., 2011. Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of biotechnology, 151(2), 180–185.
  • 37. Rinawati, M., Sari, L.A., Pursetyo, K.T. 2020, February. Chlorophyll-and carotenoids analysis spectrophotometer using method on microalgae. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 441(1), 012056.
  • 38. Sari, L.A., Pursetyo, K.T., Arsad, S., Masithah, E.D., Setiawan, E., Affandi, M. 2019. The effect of nutrient abundance on distribution of cyanobacteria and chlorophyll-a in sedati water, Sidoarjo. Pollution Research, 38, S38–S43.
  • 39. Singh, A.K., Singh, V.K., Singh, M., Singh, P., Khadim, S.R., Singh, U., Koch, B., Hasan, S.H. and Asthana, R.K. 2019. One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. Journal of Photochemistry and Photobiology A: Chemistry, 376, 63–72.
  • 40. Sri, S., Supriyantini, E., Ridlo, A., Yudiati, E., Prasetyo, L.D. 2019. Pengaruh cahaya terhadap produksi fukosantin C. calcitrans. J Kelautan Tropis, 22(2), 173–180. (in Indonesian)
  • 41. Suyoso, A.L.A., Sari, L.A., Sari, P.D.W., Nindarwi, D.D. 2022, July. Evaluation of the culture of Spirulina sp. with Walne nutrient plus vitamin B12, KCl, NPK, ZA CaO and urea. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 1036(1), 012026.
  • 42. Vo, T., Tran, D. 2014. Carotene and Antioxidant Capacity of Dunaliella salina Strains. World Journal of Nutrition and Health, 2(2), 21–23.
  • 43. Wang, X., Liang, J., Luo, C., Chen, C., Gao, Y. 2014. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. J Biortech, 161, 124–130.
  • 44. Widianingsih, R., Hartati, E., Endrawati, H., Hilal, M. 2011. Kajian kadar total lipid dan kepadatan Nitzschia sp. yang dikultur dengan salinitas berbeda. Metana, 7(1), 29–37. (in Indonesian)
  • 45. Xia, J.R., Gao, K.S. 2005. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J Integrative Plant Biology, 47(6), 668–675.
  • 46. Zhu, X., Gao, Y., Yue, Q., Kan, Y., Kong, W., Gao, B. 2017. Preparation of green alga-based activated carbon with lower impregnation ratio and less activation time by potassium tartrate for adsorption of chloramphenicol. Ecotoxicology and environmental safety, 145, 289–294.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-775d32bb-9c7d-4889-bd41-20701b0680f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.