PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The application of ceramic membranes for treating effluent water from closed-circuit fish farming

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie membran ceramicznych do oczyszczania wód poprodukcyjnych z hodowli ryb w obiegach zamkniętych
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to analyze and assess the possibility of using a two-stage filtration system with ceramic membranes: a 3-tube module with 1.0 kDa cut-off (1st stage) and a one-tube module with 0.45 kDa cut-off (2nd stage) for treating effluent water from a juvenile African catfish aquaculture. The study revealed that during the 1st filtration stage of the effluent water, the highest degrees of retention were obtained with respect to: suspended solids SS (rejection coefficient RI=100%), turbidity (RI=99.40%), total iron (RI=89.20%), BOD5 (RI=76.0%), nitrite nitrogen (RI=62.30%), and CODCr (RI=41.74%). The 2nd filtration stage resulted in a lower reduction degree of the tested indicators in comparison to the 1st filtration stage. At the 2nd stage, the highest values of the rejection coefficient were noted in for the total iron content (RIV=100%), CODCr (RIV=59.52%; RV=64.28%, RVI=63.49%) and turbidity (RIV and RV = 45.0%, RVI=50.0%). The obtained results indicate that ceramic membranes (with 1.0 and 0.45 kDa cut-offs) may be used in recirculation aquaculture systems as one of the stages of effluent water treatment.
PL
Celem pracy była analiza i ocena możliwości wykorzystania dwustopniowego systemu filtrowania z zastosowaniem membran ceramicznych w postaci modułu 3 rurowego o granicznej rozdzielczości membrany (z ang. cut-off) wynoszącej 1.0 kDa (I stopień) i modułu jednorurowego o granicznej rozdzielczości membrany wynoszącej 0.45 kDa (II stopień), do procesu oczyszczania wód poprodukcyjnych pochodzących z hodowli narybku suma afrykańskiego. Podczas I stopnia procesu filtracji wody poprodukcyjnej badania wykazały, że w najwyższym stopniu zatrzymywane były: zawiesina ogólna SS – RI= 100,0%, mętność RI=99.40%, zawartość żelaza ogólnego RI=89.20%, BZT5 RI=76.0%, oraz azot azotynowy RI=62.30% i ChZTCr RI=41.74%. II stopień procesu filtracji powodował mniejszy stopień redukcji wartości badanych wskaźników niż I stopień procesu filtracji. Wówczas najwyższy współczynnik retencji odnotowano w przypadku zawartości żelaza ogólnego RIV=100%, CODCr RIV=59.52%; RV=64.28%, RVI=63.49% i mętności RIV i RV= 45.0%, RVI=50.0%. Uzyskane wyniki wskazują na możliwość wykorzystania membran ceramicznych (o cut-off 1.0 i 0.45 kDa) w recyrkulacyjnych systemach akwakultury, jako jeden z etapów oczyszczania wód poprodukcyjnych.
Rocznik
Strony
59--66
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • West Pomeranian University of Technology Szczecin, Poland Department of Aquatic Sozology
autor
  • West Pomeranian University of Technology Szczecin, Poland Department of Aquatic Sozology
autor
  • West Pomeranian University of Technology Szczecin, Poland Department of Aquatic Sozology
autor
  • West Pomeranian University of Technology Szczecin, Poland Department of Aquatic Sozology
autor
  • West Pomeranian University of Technology Szczecin, Poland Department of Aquatic Sozology
Bibliografia
  • [1]. Bonisławska, M., Szaniawska, D. & Kuca, M. (2010). Studies on ceramic membrane application for the treatment of effluent water from fish hatcheries, Monographies of the Environmental Engineering Committee of the Polish Academy of Sciences “Membranes and membrane process in environmental protection”, 6, pp. 77–85. (in Polish)
  • [2]. Davidson, J., Good, C., Barrows, F.T., Welsh, C., Kenney P.B. & Summerfelt, S.T. (2013). Comparing the effects of feeding a grain-or a fish meal-based diet on water quality waste production and rainbow trout Oncorhynchus mykiss performance within low exchange water recirculating aquaculture systems, Aquacultural Engineering, 52, pp. 45–57.
  • [3]. Fu, P., Ruiz H., Lozier, J., Thompson, K. & Spangenberg, C. (1995). A pilot study on groundwater natural organics removal by low-pressure membranes, Desalination, 102, pp. 47–56.
  • [4]. Gemende, B., Gerbeth, A., Pausch, N. & Bresinsky, A. (2008). Tests for the application of membrane technology in a new method for intensive aquaculture, Desalination, 224, pp. 57–63.
  • [5]. Good, C., Davidson, J., Welsh, C., Brazil, B., Snekvik, K. & Summerfelt, S. (2009). The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in recirculation aquaculture systems, Aquaculture, 294, pp. 80–85.
  • [6]. Harvianto, G.R., Widiasa, I.N. & Susanto, H. (2013). Removal organic contaminants on aquaculture using ultrafiltration membranes, Indonesian Scholars Journal, 1 (1), pp. 33–38.
  • [7]. Kabsch-Korbutowicz, M. & Urbanowska, A. (2010). Water treatment in integrated process using ceramic membrane, Polish Journal of Environmental Studies, 4 (19), pp. 731–737.
  • [8]. Kabsch-Korbutowicz, M., Urbanowska, A., Majewska-Nowak, K. & Kawiecka-Skowron, J. (2010). Ceramic ultrafiltration membrane application for elimination of organic substances from water solutions, Annual Set The Environment Protection, 12, pp. 467–478. (in Polish)
  • [9]. Luo, J. & Wan, Y. (2013). Effect of pH and salt on nanofiltration – a critical review, Journal of Membrane Science, 438, pp. 18–28.
  • [10]. Martins, C.I.M., Pistrin, M.G., Ende, S.W., Eding, H. & Verreth, J.A.J. (2009). The accumulation of substances in Recirculating Aquaculture Systems (RAS). Affects embryonic and larval development in common carp Cyprinus carpio, Aquaculture, 291, pp. 65–73.
  • [11]. Martins, C.I.M., Eding, H., Verdegema, M.C.J., Heinsbroeka, L.T.N., Schneiderc, O., Blanchetond, J.P., Roque d’Orbcasteld, E. & Verreth, J.A.J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability, Aquacultural Engineering, 43, (3), pp. 83–93.
  • [12]. Matsushita, T., Matsui, Y., Shirasaki, N. & Kato, Y. (2005). Effect of membrane pore size, coagulation time, and coagulant dose on virus removal by a coagulation-ceramic microfiltration hybrid system, Desalination, 178, pp. 21–26.
  • [13]. Mohammad, A.W., Ng, C.Y., Lim, Y.P. & Ng, G.H. (2012). Ultrafiltration in food processing industry: Review on application, membrane fouling and fouling control, Food Bioprocess Tech., 5, (4), pp. 1143–1156.
  • [14]. Nyina-Wamwiza, L., Wathelet, B. & Kestemont, P. (2007). Potential of local agricultural by-products for the rearing of African catfish Clarias gariepinus in Rwanda: effects on growth, feed utilization and body composition, Aquaculture Research, 38, (2), pp. 206–214.
  • [15]. Orecki, A., Tomaszewska, M., Karakumski, K. & Morawski, A.W. (2004). Surface water treatment by the nanofiltration metod, Desalination, 162, pp. 47–54.
  • [16]. Rosenthal, H. & Hilge, V. (1992). Fish farm effluents and their control in EC countries, FAR Workshop, Hamburg 23–25 Nov. 1992, Hamburg. Inst. für Meereskunde.
  • [17]. Schneider, O., Sereti, V., Endig, H., Verreth, J.A.J. & Klapwijk, B. (2007). Kinetics, design and biomass production of a bacteria reactor treating RAS effluent streams, Aquacultural Engineering, 36, pp. 24–35.
  • [18]. Singer, A., Parnes, S, Gross, A., Sagi, A. & Brenner, A. (2008). A novel approach to denitrification processes in a zero-discharge recirculating system for small-scale urban aquaculture, Aquacultural Engineering, 39, pp. 72–77.
  • [19]. Sondhi, R., Bhave, R. & Jung, G. (2003). Applications and benefits of ceramic membranes, Membrane Technology, 11, pp. 5–8.
  • [20]. Standard Methods for Examination of Water and Wastewater (1998). American Public Health Association APHA, Washington 1998.
  • [21]. Szaniawska, D., Bonisławska, M., Ćwirko, K. & Worobec, M. (2011). Studies on the degree of permeate recovery in a two-stage system for treating effluent water from fish hatcheries applying non-organic membranes, Chemical Engineering and Equipment, 5, pp. 104–105. (in Polish)
  • [22]. Szmukała, M. & Szaniawska, D. (2009). Application of ceramic membranes in water treatment for fish hatchery supplying purposes, Desalination, 240, pp. 117–126.
  • [23]. Van der Burggen, B., Everaert, K., Wilms, D. & Vandecasteele, C. (2001). Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation, Journal of Membrane Science, 193,(2), pp. 239–248.
  • [24]. Van der Burggen, B. & Vandecasteele, C. (2002). Distillation vs. membrane filtration overview of process evaluations in seawater, Desalination, 143, pp. 207–218.
  • [25]. Van Rijn, J. (2013). Waste treatment in recirculating aquaculture systems, Aquacultural Engineering, 53, pp. 49–56.
  • [26]. Verweij, H. (2003). Ceramic membranes: Morphology and Transport, Journal of Material Science, 38, pp. 4677–4695.
  • [27]. Viadero, R.C.Jr. & Noblet, J.A. (2002). Membrane filtration for removal of fine solids from aquaculture process, Aquacultural Engineering., 26, pp. 151–169.
  • [28]. Viveen, W.J., Richter, C.J., Janssen, J.A., van Oordt, P.G. & Huisman, E.A. (1985). Practical manual for the culture of the African catfish (Clarias gariepinus). International Cooperation of the Ministry of Foreign Affairs, Netherlands. Department of Fish Culture and Fisheries of the Agricultural University of Wageningen, Netherlands and Comparative Endocrinology, Department of Zoology of the University of Utretch, the Netherlands, p. 94.
  • [29]. Waniek, A. (2006). Evaluation of natural water treatment efficiency applying reverse osmosis, nanofiltration and ultrafiltration, in: Membranes and membrane processes in environmental protection. Monographies of the Environmental Engineering Committee of the Polish Academy of Sciences, 36, pp. 661–669. (in Polish)
  • [30]. Yang, L., Zhou, H. & Moccia, R. (2006). Membrane filtration coupled with chemical precipitation to treat recirculating aquaculture system effluents, Journal of Environmental Quality, 35, pp. 2419–2424
  • [31]. Yonnekawa, H., Tomita, Y. & Watanabe, Y. (2004). Behavior of macroparticles in monolith ceramic membrane filtration with pre-treatment, Water Science & Technology, 50, (12), pp. 317–325.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-775a6dbb-9e16-4728-849a-6a9732ade47f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.