PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technical Solutions Enabling the Physical Training of Astronauts During Long-Term Stays at Space Stations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article describes problems related to the adaptation of the human body to the state of weightlessness. International studies on changes in the parameters of the musculoskeletal and cardiovascular systems are analysed. The paper also presents technical solutions in the form of numerous devices enabling human functioning in microgravity conditions, without significant decrease in physical capacity, as well as muscle and bone atrophy. The chief purpose of this paper is to propose an innovative piece of equipment that applies two pneumatic actuators for training of lower bodily parts of astronauts in a space station. The equipment recommended in the article is of the authors’ own patent. Additionally, the authors put forward a proposition of how to control the patented device in a novel way.
Twórcy
  • Department of Aerospace Engineering, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, ul. Pigonia 1, 35-310, Rzeszów, Poland
  • Military Institute of Aviation Medicine, ul. Krasińskiego 54/56, 01-755 Warsaw, Poland
Bibliografia
  • 1. Jones J.A., Karouia F., Pinsky L., Cristea O. Radiation and Radiation Disorders. In: Barratt M.R., Baker E.S., Pool S.L. (eds) Principles of Clinical Medicine for Space Flight, SPRINGER, New York 2019; 39–108.
  • 2. English K., English, L., Loehr J., Laughlin M., Lee S., Hagan, RD. Reliability of Strength Testing using the Advanced Resistive Exercise Device and FreeWeights. 2008, NASA Technical Report.
  • 3. Fregly B.J., Fregly C.D., Kim B.T. Computational Prediction of Muscle Moments During ARED Squat Exercise on the International Space Station. Journal of Biomechanical Engineering. 2015; 137.
  • 4. Evidence Report: Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance Human Research Program Human Health Countermeasures Element Approved for Public Release: March 9, Texas, 2015, National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston.
  • 5. Lang T., LeBlanc A., Evans H., Lu Y., Gnant H., Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight J. Bone Miner. Res., 2004; 19(6): 1006–1012.
  • 6. LeBlanc A., Schneider V., Shackelford L., West S., Oganov V., Bakulin A., Voronin L. Bone mineral and lean tissue loss after long duration space flight J. Musculoskelet. Neuronal Interact. 2000; 1(2): 157–160.
  • 7. Sibonga J.D., et al. Evaluating bone loss in ISS astronauts. Aerospace medicine and human performance 86.12. 2015; A38–A44
  • 8. Smith S.M, Heer M.A, Shackelford L.C., Sibonga J.D, Ploutz‐Snyder L., Zwart S.R. Benefits for bone from resistance exercise and nutrition in long‐duration spaceflight: Evidence from biochemistry and densitometry. 2012; 27(9): 1896–1906.
  • 9. Schneider S. Exercise in Space. A Holistic Approach for the Benefit of Human Health on Earth. 2016, Springer, Cologne.
  • 10. Barratt M.R., Baker E.S., Pool S.L.(eds) Principles of Clinical Medicine for Space Flight. Springer,New York, 2019.
  • 11. Seedhouse E. Trailblazing Medicine. Sustaining Explorers During Interplanetary Missions. Springer, New York, Dordrecht, 2011.
  • 12. Kahn J., Liverman, McCoy M.A. Health Standards for Long Duration and Exploration Spaceflight. The National Academies Press, Washington, D.C., 2014.
  • 13. Thornton W., Bonato F. The Human Body and Weightlessness. Operational Effects, Problems and Countermeasures. Springer Nature, 2017.
  • 14. Pletser V. Gravity, Weight and Their Absence. Springer Briefs in Physics, CAS Beijing, 2018.
  • 15. Clarke A.H. Vestibulo-Oculomotor Research in Space. Springer, Cham, Switzerland, 2017.
  • 16. Hilbig R., Gollhofer A., Bock O., Manzey D. Sensory motor and Behavioral Research in Space. Springer, Cham Switzerland, 2017.
  • 17. Carpenter R.D., Lang T.F., Bloomfield S.A., Bloomberg, J.J., Judex, S., Keyak, J.H., Spatz, J. M.. Effects of long-duration spaceflight, microgravity, and radiation on the neuromuscular, sensorimotor, and skeletal systems. J. Cosmol. 2010; 12: 3778–3780.
  • 18. Korth D.W. Exercise countermeasure hardware evolution on ISS: the first decade. Aerosp Med Hum Perform. 2015; 86(12): A7–13.
  • 19. Amonette W.E. et al. Ground reaction force and mechanical differences between the interim resistive exercise device (ired) and smith machine. Huston TX: NASA JSC. 2004. NASA/TP-2004-212063.
  • 20. Amonette W.E., et al. Evaluation of the Horizontal Exercise Fixture in Conjunction with the interim Resistive Exercise Device (iRED) for Use in Bed Rest Research. Huston, 2009. TX: NASA JSC. NASA/TP-2009-21498.
  • 21. Sibonga J., Matsumoto T., Jones J., Shapiro J., Lang T., Shackelford L. et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone 2019; 128: 112037.
  • 22. Fregly C.D., Kim B.T., Fregly B.J. Dynamic simulation of muscle loading during ARED squat exercis- eon the international space station. In: Proc. of the ASME 2013 Summer Bioengineering Conference, San Diego, CA, USA, 15–21 November 2013.
  • 23. Bentley J. et al. Advanced Resistive Exercise Device (ARED), 2006. Huston, TX: NASA JSC. NASA/ TP-2006-213717.
  • 24. Kelly S. An unearthly challenge. A year in space, a life full of discoveries. Ed. Sonia Draga, Katowice 2018, 403–404.
  • 25. Blocker, A., Lostroscio, K., & Carey, S. L. Biomechanics of healthy subjects during exercise on a simulated vibration isolation and stabilization system. Life Sciences in Space Research. 2022; 34: 16–20.
  • 26. McCrory J.L., Lemmon D.R., Sommer H.J., Prout B., Smith D., Korth D.W., Cavanagh P.R. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for use on the International Space Station. Journal of applied biomechanics. 1999; 15(3): 292–302.
  • 27. Blottner D., Salanova M. The NeuroMuscular System: From Earth to Space Life Science. Nuromuscular Cell Signalling in Disuse and Exercise. Springer, Cham, Heidelberg. New York, London, 2015.
  • 28. Lee S.M.C., Scheuring R.A., Guilliam M.E., Kerstman E.L. Physical Performance, Countermeasures, and Postflight Reconditioning. In: Barratt M.R., Baker E.S., Pool S.L. (Eds) Principles of Clinical Medicine for Space Flight. Springer, New York 2019.
  • 29. Żyłka M.I., Żyłka W., Szczerba Z., Biskup M. An Original System for Controlling the Speed of Movement of Pneumatic Drives in Rehabilitation Devices. Advances in Science and Technology Research Journal. 2023; 17(1): 124–132.
  • 30. Żyłka M.I., Szczerba Z., Sczerba K. Experimental research on the velocity of two pneumatic drives with anelement for concurrent motion. Advances in Science and Technology Research Journal. 2022; 16(2): 81–88.
  • 31. Lin X., Wang X., Wu W. Comprehensive analysis of a lower limb rehabilitation robot and its lightweight and simplification, 2022 4th International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Hamburg, Germany, 2022; 734–739.
  • 32. Żyłka M., Żyłka W., Szczerba Z. Patent number PL 233327 for the invention called „Device for the rehabilitation of the lower limbs”, 2019.
  • 33. Węsierski Ł.N. Pneumatics. Elements and layouts. Rzeszow-Warsaw, 2015.
  • 34. Burghardt A.T., Cieślik J., Flaga S. et al, Selected problems of modern robotics. Department of Process Automation AGH. Kraków, 2015.
  • 35. ANSYS Fluent Theory Guide 15.0 (2013).
  • 36. Żyłka M., Marszałek N., Żyłka W. Numerical simulation of pneumatic throttle check valve using computational fluid dynamics (CFD). Sci Rep. 2023; 13: 2475.
  • 37. Winkler T. Computer-aided design of anthropotechnical systems. WNT, Warszawa, 2005.
  • 38. Gedliczka A. Atlas of human measurements, data for ergonomic design and assessment, Central Institute for Labor Protection. Warszawa, 2001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-775a3287-9a02-4a77-8ef7-8e4b6f386f1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.