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Abstract

In this work, evolutionary algorithms together wilte Metropolis-Hastings sampling technique hawenhesed
for parameter identification of the Wohler curvedofraluminum alloy 2024-T3. An evolutionary algbnt is a
subset of evolutionary computation, a generic pajuh-based metaheuristic optimization algorithnhe T
Metropolis-Hasting algorithm is one of the most @sgread Markov chain Monte Carlo methods for puster
distribution estimation. In this contribution, bo#iigorithms have been presented to estimate theapiidy
density functions using Wohler parameters as a sagly. Results were shown in terms of distribusbape
and parameter correlations and the differencesjngrifrom applied algorithms, have been compardw T
information about parameter distributions of Wohégjuation is useful to prepare risk analyses based
statistical safe life approach. The safe life applocan be met, for instance, in assessing theiigly of an
aircraft.

1. Introduction durability of structural components has been

: . . o _ demonstrated.
High-fatigue diagram shape optimization is

problem without an analytical solution. The problem
can be approached by optimization algorithms.
Particularly noteworthy are evolutionary algorithms An evolutionary algorithm is a subset of
due to the ease of adjustment to the input data andvolutionary computation, a generic population-
relatively short time required to solve a given based metaheuristic optimization algorithm [4]-[5].
problem. These  metaheuristic  optimization In genetic algorithms, string populations are known
algorithms search the space alternative solutions ias chromosomes or genotype, which encodes a set of
order to find the best, or potentially the bestugoh. potential solutions to the analyzed problem evolves
Markov chain Monte Carlo (MCMC) methods, are towards the better solutiorigure 1 shows the
different from other system identification methods schematic diagram of gene construction:

that are based on maximum likelihood, in that they

2. Evolutionary algorithms

allow describing the probability density function 0 2 b

(pdf) of the inferred parameters, without any

assumption on their shapes. Y A ’

The aim of this work was to apply the evolutionary \

algorithms and consolidated theory of MCMC gene chromosome

methods to identify the parameters of fatigue csirve Figure 1.Example of gene

commonly defined aS-Ncurves or Wohler curves.

The results of the algorithms have been criticalpgyelopment generally starts from a population of

analysed and compare with consolidated nonlineat;nqomiy generated individuals / solutions and

fitting methods. The efficacy of the algorithms .,niinyes in subsequent generations / iteratiams. |

application in order to simplify the fatigue te®in gyery generation, adaptation of each solution & th

and facilitate the diagnostic inference abouty,njation is assessed then they are stochastically
selected from the current population on the bakis o
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their suitability and modified (recombined and The transition kerneK drives the link between two
randomly mutated) to create a new generation oSubsequent random variables; it is a conditional
society, which is then used in the next iteratibthe probability satisfying the detailed-balance corfiti
algorithm. The algorithm ends when the maximum or reversibility condition of the chain:

number of generations has been reached, or when it

reaches a satisfactory level of adaptation (the K@ |8) TG )= K Gy 1) E,) (2)
assumed level of solution precision). If the altjori

is terminated due to the maximum number of\here (9 is the stationary probability of the
generations, a satisfactory solution may not badou realizationd,.

Figure 2 illustrates flowchart of the evolutionary

algorithm. 4. Metropolis-Hastings sampling technique

for parameter identifications

The initiation . . . . . .
ERaEER nitial population Metropolis — Hasting algorithm is a generalizatain

the Gibs-sampler algorithm, which based on the
theory of Markov chain Monte Carlo. This is thesfir
historically and remains the most important MCMC
algorithm. It is usually implemented to estimate
parameter pdfs in presence of highly nonlinear
functions and non-Gaussian distributions.
Additionally, it estimates the noise associatedht®
observations given as input of the algorithm. &vas
a series of dependent samples of the parameters
according to the transition kerneK by the
decomposition of the transition kernel itself.
Metropolis-Hastings algorithm is used to generate a
! reversible Markov chain. The aim is to draw
_ dependent samples with transition kerKéh..|%).
R According to the MH theory, the transition kernel
! K(%+1|%) can be split into a proposal distributign

Tl ﬁﬂ and an acceptance probability that continue to
— satisfy (2). The splitting of the transition kernel
/i\ becomesK (sl =0 Skl )a(G11%). In this way,
- > No the detailed balance conditiochange from (2) to
e (3), but the stationary distributiom(9) is still
\/ unknown.

Yes

;
Returns the best adf.:al:)‘:ed individual from q(ﬂk |79k+1) IjT(ﬁk |Z9k+1) Ij7-(79k+1) (3)
rent population
k =A(Fn 18) @ (8ior 19) O(5)

Figure 2. Flowchart illustrating an evolutionary

Selection .
The part of the population for .
using cne of the method:
® Roulette wheel selection
® Rank Selection
“Tourn t selection

Reproduction

Select parents using one of T
e Randcm

e The best one 1is crossover v‘i’iﬁﬁ‘
rest chromosomes

# 'The best one is crossover with

Mutate

algorithms model Let us assume a series of independent identically
distributed observationg depending on the value of
3. Markov Chain modd 9 through a whatever nonlinear relationship h().

_ _ ) If the relation h(:) is known, the conditioned
According to [7], a First-order Markov Chain (FCM) probability of ¢ given the observationg can be
with finite spaceE is a sequence @&-valued random  eyaluated. According to Bayes' rule [1], the
variablesd (with k belonging to the set of natural conditioned probabilityz(9y) follows the relation
numbers) such that the conditional distributiondof  (4). The conditioned pdf can be evaluated by the

(knowing all the discrete valuek., with m> 1) is  gybstitution ofz(d]y) with the likelihood of$ given
the same as the conditional distributiondpfgiven  the observationk(9]y).

only %1, which can be described by:

PO, 1900 B )= PO By @ AN 0A(E) () )
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Starting from equation (3), the acceptancewhered, are the samples selected from the Markov

probability (%) is extracted: chain k is the transient period adis the number
of selected steps of the Markov chain.
IT(J;?kﬂ y)-q(ﬂk‘@ku)

(3, |y)-q(‘@k+1z9k)

11 (5) 5. Wohler curve

contrast to the static strength fatigue strength is
characterized by a large scatter of the resultsdts

It represents the probability to accept kath sample  of samples. In order to construct the Wohler curve
of %1 given the previous sampl& If the prior the results of experimental data equation (7) were
probability z($) has a symmetric distribution(-) used [2], [6]. Generally, the relationship betwdles
can be removed form eq.(5). For a normally- amplitude of cycles and the fatigue life is expdran
distributed random noise affecting the observationsout a specific form of mathematical functions may b
y, the likelihood of thé-th sampleL(94]y) leads: varies.

S=S, W+ A/(N+G)") W
L(S — 1 _¢y(’9k)
(S 1y)= ex ; (6) | | . |
N 270 20 where A is numerical constantG is numerical
constant governing low endurances is numerical

where ¢,(%) is the cost function representing the €XPonentSrepresents stres,is the number of load
error between the observatigrand the simulation of ~ €Ycles, enduranc& can represents stress at infinite
the system based on the parameter sathd, that life.

IS ¢y ()=[y-f ()] 2 while ¢ is the standard deviation ]

of the uncertainty or noise affecting the obseoragi 6. Calculation and results

It is important to consider thatbelongs to the vector

of parameterdy, thus a sample of is generated at 6.1 Input parameters
each stepk. New state 5k+1 is accepted with Samples of unnotched 2024-T3 aluminum alloy for
various wrought products at longitudinal direction
were obtained from [3], presentedTiable 1

O’(Jz;kﬂ

z9k)=min

probability a(5k+1|z9k) if a random number

sampled from a uniform distribution U[O, 1] is less
thana(%.1|9); otherwise it is refused and the current Taple 1 Data for Wohler curve
sample remains equal to the previous 8pe At the

end of the algorithm, the conditional mean and| No:-of | Noof | Maximum | No.of | Noof | Maximum
. sampleg cycles | stress [MPa]| sampleg cycles | stress [MPa]
variance ofj can be evaluated 1 2500 2344 11 | 28804 164.8
The algorithm can be written as follows: > 2970 2344 12 | 64204 153.8
1. start from arbitrary values for the unknown 3 3530 2413 13 70600 137.2
parameter vectoﬂo , 4 6500 206.2 14 235000 123.4
~ 5 7710 206.2 15 | 210000 102.0
2. draw a proposal sampled, from the 6 10100 206.2 16 | 40900D 102.0
: 7 10100 193.1 17 | 50500D 102.0
proposal densm(ﬂkﬂ |Z9k) ’ 8 11700 191.7 18 | 75400D 102.0
3. evaluatex using (5), 9 | 17500 191.7 19 | 3280000 88.9
4. accept the new statém, 10 | 17500 171.7 20 | 5290000 81.4

5. repeat steps 2 to 4 until the desired chainlt was assumed that the individual gene is expdesse
length is reached (k>N), in the form of a 4-element array containing the
6. Skip k samples to avoid thieurn-in period  desired parameters of the equation A7)G, m, &
of the chain, save a state evegyMarkov  Population size has been accepted as 1000
chain stepsthinning process) and compute individuals. Selection of parameters of equation (7
the required estimates using: was based on minimizing the objective function
describing the tracking errar calculated from the
equation (8):

J:iz(gi —1)[@1—%:] ©6)

1 N
E(ﬁly):N—ko Zﬂk
k:ko+1
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where: Prior distributionz for parameters is presented in
o - stress for the-th sample calculated on the basis Table 5
of the calculated parameters of the equation,

o - stress theth sample of the fatigue tests. Table 5 Prior distributionz
Under these conditions, the algorithm calculation
ended after 100 iterations to provide the bestli®su At (x) =—= exp(—(x—GO)z)
with the required accuracy — this is a sufficient 20V 2t 2020
number of operations for such a large population in _ 1 ~(x—4000§
order to achieve algorithms convergence and the | G n(x)—3000/7_[exp\ 23006
result sought. Over 2000 simulation of the 1 —(x- 0.3y
evolutionary algorithm were carried out. Myt () = expt =-)
Table 2 shows the interested parameters and the 0.04/ 21 2.07
corresponding  distributions  for  evolutionary S (%) = 1 exp/_(x_6o)2)
algorithm; the subscriptfow and up mean lower kel afor T 2R
limit andupper limit respectively. —(Inx— O}
THER.CE exp(— =)
Table 2 Parameter distributions x[0.5/27 20.3

9 prior pdf 6.2. Results

é Bg{émw@d]))::%(([[zooilzzo(gé]) Figures 1-2show the difference between the results
- U([m:za:nﬁ“] ):U([O:O.45]) from non-lineral regression, mean, mode and median
S U([SolowS)j 1)=U([50,75]) value of the resulting parameters for both algamgh

Figures 3-4show randomly chosen results.
The length of the M-H chain has been heuristically

selected as 50000 samples. Starting parameigrs * ‘ ' ‘ T
for Metropolis-Hastings algorithm are described iRirags ol edtn]|.
Table 3 [ksifinct?]

Table 3 Starting parameter8, of Wohler curve

Ag 120
G, | 40000
My 0.4
Sno | 24
ao 0
New samples J,,,are drawing from proposal o 1 5 5 W o
probability g for Wohler curve parameters, which Flgurezilg Evolutionary algorithm results
was selected as follows: N ‘ ‘ T
240 \(\\ r’::z;
Table 4 Proposal probability 20 nomin )
A 1 ~(x=A)’
X) = exp( 180}
Ak+1 q( ) 10\/57_ pc 2|:|.02 ) ol
= 1 -(x-G,)?
G X) = exp(l k 140}
k+1 q( ) 500 lzn p\ 2[50@ ) o
-1 /_(X_mk)2 I
Mot 9= 50127 200
- ~ 1 —(X— ] )2 80
Stk A9 = P )
—(Inx—g )2 Figure 2 M-H results
Oy | 90 =exp L expflX=%) J N
x.3/ 27 2.3
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over time. The parameters governing the Wa *
. . 10
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Figures 6-9show the posterior distribution of t
parametersA, G, m, &) of bothalgorithm:.
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The most common fitting technique is the nonlineaf2]
regression based on Levenberg-Marquardt algorithm.
It has the restricting hypothesis of normally[3]
distributed parameters (like the hypothesis made in
the calculation presented above), because it is not
able to evaluate the shape of the probability dgnsi
function parameters. The nonlinear fitting subnoaiti [4]
available inMatlab® has been used hereafter to
analyze the results of the algorithms, which are
shown inTable 6 [5]

Table 6. Expected values off using a nonlinear [6]
fitting algorithm, evolutionary algorithmand MH

algorithm
9 Hy Hs Hy [7]
Nonlinear Evolutionary Metropolis-
fitting algorithm Hastings
A 67. 80.35 59.08
G 4796 5316 4698 [8]
[cycles]
m 0.3708 0.3893 0.3347
S, IMPa] 68.05 69.83 60.21
J [MPa] 11.6
7. Conclusion

The possibility to use evolutionary algorithms and
Metropolis-Hastings  sampling  technique  for
parameter identifications has been assessed in this
work.

Both algorithms allows to draw samples from the
posterior density function (the probability of mbde
parameters conditioned on available data), thus
representing both a statistical tool for the estioma

of parameter uncertainty as well as a valid method
for the updating of the prior knowledge on model
parameters.

Evolutionary algorithms more accurately locate
approximation of the experimental data to the
Wohler curve.

The validity of the fitting has been proven by the
comparison with the consolidated nonlinear fitting
procedure based on the Levenberg-Marquardt
algorithm.

The information about parameter distributions @& th
Wohler equation is useful to prepare risk analyses
based on statistical safe life approach. The stde |
approach can be used, for instance, in assessing th
reliability of an aircraft.

References

[1] Ayyub, B. M. (2011) Vulnerability, Uncertainty,
and Risk - Analysis, Modeling, and Management.
American Society of Civil Engineers (ASCE).

15¢

DEF STAN 00-970, Part 1/3 Section Leaflet 35
Fatigue. Safe-life substantiation
DOT/FAA/AR-MMPDS-01. (2003). Metallic
Materials Properties Development  and
Standardization(MMPDS. U.S. Department of
Transportation, Federal Aviation Administration.
Gwiazda, T. (2007). Algorytmy genetyczne.
Kompendium.  Warszawa, Wydawnictwo
Naukowe PWN SA.

Jedrzejewski, T. (2007)Algorytmy ewolucyjne.
Wakacyjne Warsztaty Wielodyscyplinarne.

Leski, A., et. al. (2009). Oszacowanie
indywidualnego ztycia zngczeniowego struktur
okreslonej populacji statkbw  powietrznych.
ITWL, Warsaw.

Mattrand, C., Bourinet, J.M. & Theret, D. (2011).
Analysis of Fatigue Crack Growth under Random
Load Sequences Derived from Military In-flight
Load Data.26th ICAF Symposium, Montreal.
Sharufatti, C. (2013)-atigue crack monitoring of
helicopter fuselages and life evaluation through
sensor network. Politecnico di  Milano,
Dipartimento di Meccanica, PhD thesis.



