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Abstract 
 

In this work, evolutionary algorithms together with the Metropolis-Hastings sampling technique have been used 
for parameter identification of the Wohler curve of duraluminum alloy 2024-T3. An evolutionary algorithm is a 
subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. The 
Metropolis-Hasting algorithm is one of the most widespread Markov chain Monte Carlo methods for posterior 
distribution estimation. In this contribution, both algorithms have been presented to estimate the probability 
density functions using Wohler parameters as a case study. Results were shown in terms of distribution shape 
and parameter correlations and the differences, arising from applied algorithms, have been compared. The 
information about parameter distributions of Wohler equation is useful to prepare risk analyses based on 
statistical safe life approach. The safe life approach can be met, for instance, in assessing the reliability of an 
aircraft. 
 
1. Introduction 
 

High-fatigue diagram shape optimization is a 
problem without an analytical solution. The problem 
can be approached by optimization algorithms.  
Particularly noteworthy are evolutionary algorithms, 
due to the ease of adjustment to the input data and 
relatively short time required to solve a given 
problem. These metaheuristic optimization 
algorithms search the space alternative solutions in 
order to find the best, or potentially the best solution. 
Markov chain Monte Carlo (MCMC) methods, are 
different from other system identification methods 
that are based on maximum likelihood, in that they 
allow describing the probability density function 
(pdf) of the inferred parameters, without any 
assumption on their shapes. 
The aim of this work was to apply the evolutionary 
algorithms and consolidated theory of MCMC 
methods to identify the parameters of fatigue curves, 
commonly defined as S-N curves or Wohler curves.  
The results of the algorithms have been critical 
analysed and compare with consolidated nonlinear 
fitting methods. The efficacy of the algorithms 
application in order to simplify the fatigue testing 
and facilitate the diagnostic inference about 

durability of structural components has been 
demonstrated. 
 
2. Evolutionary algorithms 
 

An evolutionary algorithm is a subset of  
evolutionary computation, a generic population-
based metaheuristic optimization algorithm [4]-[5].  
In genetic algorithms, string populations are known 
as chromosomes or genotype, which encodes a set of 
potential solutions to the analyzed problem evolves 
towards the better solution. Figure 1 shows the 
schematic diagram of gene construction: 
 

 
Figure 1. Example of gene 
 
Development generally starts from a population of 
randomly generated individuals / solutions and 
continues in subsequent generations / iterations. In 
every generation, adaptation of each solution in the 
population is assessed then they are stochastically 
selected from the current population on the basis of 
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their suitability and modified (recombined and 
randomly mutated) to create a new generation of 
society, which is then used in the next iteration of the 
algorithm. The algorithm ends when the maximum 
number of generations has been reached, or when it 
reaches a satisfactory level of adaptation (the 
assumed level of solution precision). If the algorithm 
is terminated due to the maximum number of 
generations, a satisfactory solution may not be found. 
Figure 2 illustrates flowchart of the evolutionary 
algorithm.  
 

 
 

Figure 2. Flowchart illustrating an evolutionary 
algorithms model  
 
3. Markov Chain model 
 

According to [7], a First-order Markov Chain (FCM) 
with finite space E is a sequence of E-valued random 
variables ϑk (with k belonging to the set of natural 
numbers) such that the conditional distribution of ϑk 
(knowing all the discrete values ϑk-m with m ≥ 1) is 
the same as the conditional distribution of ϑk given 
only ϑk-1, which can be described by: 
 

    
1 2 1 1( | , ,..., ) ( | )k k k k kP Pϑ ϑ ϑ ϑ ϑ ϑ− − −=  (1) 

 

The transition kernel K drives the link between two 
subsequent random variables; it is a conditional 
probability satisfying the detailed-balance condition 
or reversibility condition of the chain: 
 
   1 1 1( | )· ( ) ( | )· ( )k k k k k kK Kϑ ϑ π ϑ ϑ ϑ π ϑ+ + +=   (2) 

 
where π(ϑk) is the stationary probability of the 
realization ϑk.  
 
4. Metropolis-Hastings sampling technique 
for parameter identifications 
 

Metropolis – Hasting algorithm is a generalization of 
the Gibs-sampler algorithm, which based on the 
theory of Markov chain Monte Carlo. This is the first 
historically and remains the most important MCMC 
algorithm. It is usually implemented to estimate 
parameter pdfs in presence of highly nonlinear 
functions and non-Gaussian distributions. 
Additionally, it estimates the noise associated to the 
observations given as input of the algorithm. It draws 
a series of dependent samples of the parameters 
according to the transition kernel K by the 
decomposition of the transition kernel itself. 
Metropolis-Hastings algorithm is used to generate a 
reversible Markov chain. The aim is to draw 
dependent samples with transition kernel K(ϑk+1|ϑk). 
According to the MH theory, the transition kernel 
K(ϑk+1|ϑk) can be split into a proposal distribution q 
and an acceptance probability α that continue to 
satisfy (2). The splitting of the transition kernel 
becomes K(ϑk+1|ϑk)=q(ϑk+1|ϑk)α(ϑk+1|ϑk). In this way, 
the detailed balance condition change from (2) to 
(3), but the stationary distribution π(ϑ) is still 
unknown. 
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Let us assume a series of independent identically 
distributed observations y depending on the value of 
ϑ through a whatever nonlinear relationship y = h(ϑ). 
If the relation h(·) is known, the conditioned 
probability of ϑ given the observations y can be 
evaluated. According to Bayes’ rule [1], the 
conditioned probability π(ϑ|y) follows the relation 
(4). The conditioned pdf can be evaluated by the 
substitution of π(ϑ|y) with the likelihood of ϑ given 
the observations L(ϑ|y). 
 

   ( ) ( ) ( )·k k ky yπ ϑ π ϑ π ϑ∝   (4) 
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Starting from equation (3), the acceptance 
probability α(ϑk|ϑk-1) is extracted: 
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It represents the probability to accept the k-th sample 
of ϑk+1 given the previous sample ϑ. If the prior 

probability π(ϑ) has a symmetric distribution, π(·) 
can be removed form eq.(5). For a normally-
distributed random noise affecting the observations 
y, the likelihood of the k-th sample L(ϑk|y) leads: 
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where φy(ϑk) is the cost function representing the 
error between the observation y and the simulation of 
the system based on the parameter sample ϑk [8], that 
is φy(ϑk)=[y-f (ϑk)]

2, while σ is the standard deviation 
of the uncertainty or noise affecting the observations. 
It is important to consider that σ belongs to the vector 
of parameter ϑk, thus a sample of σ is generated at 
each step k. New state 1

~
+kϑ  is accepted with 

probability ( )kk ϑϑα |~
1+  if a random number 

sampled from a uniform distribution U[0, 1] is less 
than α(ϑk+1|ϑk); otherwise it is refused and the current 
sample remains equal to the previous one ϑk-1. At the 
end of the algorithm, the conditional mean and 
variance of ϑ can be evaluated 
The algorithm can be written as follows: 

1. start from arbitrary values for the unknown 
parameter vector 0ϑ , 

2. draw a proposal sample kϑ%  from the 

proposal density ( )1 |k kq ϑ ϑ+ , 

3. evaluate α using (5), 

4. accept the new state 1kϑ +
% , 

5. repeat steps 2 to 4 until the desired chain 
length is reached (k>N), 

6. Skip k0 samples to avoid the burn-in period 
of the chain, save a state every nt Markov 
chain steps (thinning process) and compute 
the required estimates using: 
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+=−
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N
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where kϑ  are the samples selected from the Markov 

chain, k0 is the transient period and N is the number 
of selected steps of the Markov chain. 
 
5. Wohler curve 
 

contrast to the static strength fatigue strength is 
characterized by a large scatter of the results for sets 
of samples. In order to construct the Wohler curve 
the results of experimental data equation (7) were 
used [2], [6]. Generally, the relationship between the 
amplitude of cycles and the fatigue life is exponential 
but a specific form of mathematical functions may be 
varies. 
 

   ( ) )/1(inf
mGNASS ++=               (7) 

 

where A is numerical constant, G is numerical 
constant governing low endurances, m is numerical 
exponent, S represents stress, N is the number of load 
cycles, endurance, Sinf can represents stress at infinite 
life. 
 
6. Calculation and results 
 

6.1. Input parameters 
 

Samples of unnotched 2024-T3 aluminum alloy for 
various wrought products at longitudinal direction 
were obtained from [3], presented in Table 1: 
 
Table 1. Data for Wohler curve 
 

No. of 
samples 

No of 
cycles 

Maximum 
stress [MPa] 

No. of 
samples 

No of 
cycles 

Maximum 
stress [MPa] 

1 2500 234.4 11 28800 164.8 

2 2970 234.4 12 64200 153.8 

3 3530 241.3 13 70600 137.2 

4 6500 206.2 14 235000 123.4 

5 7710 206.2 15 210000 102.0 

6 10100 206.2 16 409000 102.0 

7 10100 193.1 17 505000 102.0 

8 11700 191.7 18 754000 102.0 

9 17500 191.7 19 3280000 88.9 

10 17500 171.7 20 5290000 81.4 
 

It was assumed that the individual gene is expressed 
in the form of a 4-element array containing the 
desired parameters of the equation (7) A, G, m, Sinf. 
Population size has been accepted as 1000 
individuals. Selection of parameters of equation (7) 
was based on minimizing the objective function 
describing the tracking error δ calculated from the 
equation (8): 
 

   
*

*
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σ σ
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where: 
σi - stress for the i-th sample calculated on the basis 

of the calculated parameters of the equation,  
σ

* - stress the i-th sample of the fatigue tests. 
Under these conditions, the algorithm calculation 
ended after 100 iterations to provide the best results 
with the required accuracy – this is a sufficient 
number of operations for such a large population in 
order to achieve algorithms convergence and the 
result sought. Over 2000 simulation of the 
evolutionary algorithm were carried out.  
Table 2 shows the interested parameters and the 
corresponding distributions for evolutionary 
algorithm; the subscripts low and up mean lower 
limit and upper limit, respectively. 
 
Table 2. Parameter distributions 
 

ϑ  prior pdf 

A U([A low,Aup] )=U([20,120]) 
G U([G low,Gup] )=U([0,12000]) 
m U([mlow,mup] )=U([0,0.45]) 
S0 U([S0low,S0up] )=U([50,75]) 

 
The length of the M-H chain has been heuristically 
selected as 50000 samples. Starting parameters 0ϑ  

for Metropolis-Hastings algorithm are described in 
Table 3. 
 
Table 3. Starting parameters 0ϑ  of Wohler curve 
 

A0 120 
G0 40 000 
m0 0.4 
Sinf 0 24 
σ0 0 

 
New samples 1

~
+kϑ are drawing from proposal 

probability q for Wohler curve parameters, which  
was selected as follows: 
 
Table 4. Proposal probability q 
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Prior distribution π for parameters is presented in 
Table 5. 
 
Table 5. Prior distribution π 
 

Ak+1 

2

2

1 ( 60)
( ) exp( )
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x
xπ

π
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⋅
 

G k+1 
2

2
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( ) exp( )
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m k+1 
2

2

1 ( 0.3)
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Sinf k+1 

2

2

1 ( 60)
( ) exp( )

2 44 2
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2
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x
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6.2. Results 
 

Figures 1-2 show the difference between the results 
from non-lineral regression, mean, mode and median 
value of the resulting parameters for both algorithms. 
Figures 3-4 show randomly chosen results. 
 

 
Figure 1. Evolutionary algorithm results 

 
Figure 2. M-H results 
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Figure 3. Randomly chosen evolutionary
results 

 

Figure 4. Randomly chosen M-H results
 
Figure 5 shows the estimation of A, G, m, S
over time. The parameters governing the Wohler 
curve are well-estimated by the M-H algorithm.
 

 

Figure 5. Parameters estimation through
 
Figures 6-9 show the posterior distribution of the 
parameters (A, G, m, Sinf) of both algorithms
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σ 

stress 
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evolutionary algorithm 

 

results 

A, G, m, Sinf and σ 
over time. The parameters governing the Wohler 

H algorithm. 

 

Parameters estimation through 

show the posterior distribution of the 
algorithms. 

 

Figure 6. Distribution of parameter 
 

 

Figure 7. Distribution of parameter 
 

 

Figure 8. Distribution of parameter 
 

 

Figure 9. Distribution of parameter 
 
 

N

2, 2015 

 

Distribution of parameter A, G, m, Sinf  

 

Distribution of parameter A, G, m, Sinf 

 

Distribution of parameter A, G, m, Sinf 

 

Distribution of parameter A, G, m, Sinf 
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The most common fitting technique is the nonlinear 
regression based on Levenberg-Marquardt algorithm. 
It has the restricting hypothesis of normally 
distributed parameters (like the hypothesis made in 
the calculation presented above), because it is not 
able to evaluate the shape of the probability density 
function parameters. The nonlinear fitting subroutine 
available in Matlab© has been used hereafter to 
analyze the results of the algorithms, which are 
shown in Table 6. 
 
Table 6. Expected values of ϑ using a nonlinear 
fitting algorithm, evolutionary algorithms and MH 
algorithm 
 

ϑ  
ϑµ  

Nonlinear 
fitting 

ϑµ  

Evolutionary 
algorithm 

ϑµ  

Metropolis-
Hastings 

A  67. 80.35 59.08 

G
[cycles] 

4796 5316 4698 

m  0.3708 0.3893 0.3347 

0S [MPa] 68.05 69.83 60.21 

σ [MPa] - - 11.6 

 
7. Conclusion 
 

The possibility to use evolutionary algorithms and 
Metropolis-Hastings sampling technique for 
parameter identifications has been assessed in this 
work. 
Both algorithms allows to draw samples from the 
posterior density function (the probability of model 
parameters conditioned on available data), thus 
representing both a statistical tool for the estimation 
of parameter uncertainty as well as a valid method 
for the updating of the prior knowledge on model 
parameters.  
Evolutionary algorithms more accurately locate 
approximation of the experimental data to the 
Wohler curve. 
The validity of the fitting has been proven by the 
comparison with the consolidated nonlinear fitting 
procedure based on the Levenberg-Marquardt 
algorithm. 
The information about parameter distributions of the 
Wohler equation is useful to prepare risk analyses 
based on statistical safe life approach. The safe life 
approach can be used, for instance, in assessing the 
reliability of an aircraft. 
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