INFORMATION
SYSTEMS IN

MANAGEMENT Information Systems in Management (2014) Vol. 3 (3) 170-181

SECURITY MECHANISMS FOR DATA ACCESS IN ASPECTS OF
TOOLS AVAILABLE IN .NET FRAMEWORK

ANETA MICHALSKA, ANETA PONISZEWSKA-MARANDA
Institute of Information Technology, Lod=z University of Technology, Poland

Software solutions are nowadays commonly used in business. More and more
transactions are conducted on-line as well as more and more critical information is
being kept on local or remote servers in huge databases. The purpose of presented
paper is to analyze and propose the solutions used for the security of sensitive per-
sonal data and access to such data provided by the platform chosen for research with
respect to the real-life needs of the developers and end-users. The main focus are put
on the solutions provided by the NET platform which next to Java is one of the
most commonly used programming environments for both web page and desktop
applications.

Keywords. security mechanisms, data security, data access, .NET platform

1. Introduction

Together with the rapidly evolving environment of technological advances
which aim to simplify and accelerate the business and production processes, an
increasingly important issue becomes the development of appropriate security
measures which would provide essential protection of intellectual property. Soft-
ware solutions are nowadays commonly used in business. More and more transac-
tions are conducted on-line as well as more and more critical information is being
kept on local or remote servers in huge databases. The increased availability of
information as a whole became a threat for confidential information and that is why
the necessity to assure the security of sensitive data became undeniable. Develop-

ers of information systems put more and more stress on the aspect of security, as
they have to ensure that their product will comply with international and local
standards of personal data protection and it will guarantee the customers safe stor-
age and use of data. On the other hand the platform providers try to equip their
software designed for developers with built-in security mechanisms and frame-
works in order to facilitate the process of software production [1].

The purpose of presented paper is to present the solutions used for the security
of sensitive personal data and access to such data provided by the platform chosen
for research with respect to the real-life needs of the developers and end-users. The
main focus will be put on the solutions provided by the .NET platform which next
to Java is one of the most commonly used programming environments for both
web page and desktop application projects. .NET framework offers the possibility
to use several programming languages and approaches for creation of Internet ap-
plications, web pages and desktop programs [2]. The amount of sensitive data such
as names, addresses, passwords, credit card numbers, which flow through the net,
is enormous and constantly exposed to falling into the wrong hands.

The paper is structured as follows: the first part presents the security mecha-
nisms of .NET environment contributed to establishing fixed and stable position of
NET as a platform for Web application development. The second part deals with
the used security mechanisms and their effectiveness in data protection, presenting
the recommendations regarding the choice of NET environment security solutions.

2. Security mechanisms of .NET framework

NET framework is equipped with mechanisms giving the possibility of ap-
plying numerous techniques and a significant number of security name-spaces in
order to enable the developer to build a secure program both in case of desktop and
Web applications. The largest pressure is put on the Web application security solu-
tions as these are those more liable to threats and violence of data and data access
security rules. NET framework distinguishes between two types of security con-
nected with application design [3, 4]

e user security (role-based security) and

e code security (code access security).

Both these types of application security are vital. The order of their im-
portance is determined by the purpose which the application serves as well as the
user requirements. User security aims to provide a managed access to application
resources and operations available to the end-users basing on their privileges.
On the other side there is code security which is similarly responsible for resource
access and availability of operations but this time the application controls the code

171

which requests the permissions to these actions. This prevents untrusted pieces of
code coming from suspicious sources to be granted access to application interior [7].
User security and code security are not excluding — they may be applied ele-
mentarily providing the application with doubled security of different kind. In short
one may notice that user security corresponds to the identification of the end-user
and answers the question who is using the application and which operations he can
perform (Fig. 1), whereas code security tries to determine where did the code try-
ing to gain access come from, who wrote this code and what operations can this
code perform (Fig. 2). In case of code security it does not matter who uses the ap-
plication and what type of account does he have. Code security is based on author-
izing the application access to system resources, file system, registry, network,
services and databases. The identity of the user is authenticated in the case of user
security and permissions are authorized and granted basing on this authentication.

Role-based security

Authentication Authorization
User T > Web pages | Operations 1 3| Database

Business logic | Data access

Who is the user? What can the user do?

Figure 1. Schema of role-based security

2.1. Role-based security

As mentioned earlier the role-based security refers to the aspect of who can
access application resources and which operations he can perform [5, 6]. This type
of security is specifically used to authenticate and authorize the users basing on the
roles assigned to the user accounts. The roles are determined basing on the business
application of the program and they are specified particularly for the domain in
which the program is used [7].

The Principal and Identity objects play the key role in this type of security for
NET platform. The Principal object is the reflection of the identity of the user and
its membership to the roles. The interactions and principles of behavior of the
Principal object are based on the RolePrincipal and GenericPrincipal objects.
Major functionality of Principal object is that it stores the information about the
user roles which determine the user permissions therefore it is attached to every
request issued by the user to the Web application. This object can be retrieved us-
ing HttpContext. Current. User property.

172

What can the code do?

3 CAS Polic
{Permission-based authorization) ¥

Where does the code
come from?

(Evidence-based €—-,__‘__‘__‘
authorization) \

Code Access Security

Secure resources

Evidence

User

Code

Privileged operations

Web application

Figure 2. Schema of code-based security

The Principal objects store as a property the Identity objects. Identity objects
are responsible for storing the user name, authentication type flag and authentica-
tion success or failure flag. Thanks to this information, the Principal objects are
able to tell between authenticated, non-authenticated and anonymous users [7].

Another type of objects taking part in secure role-based authorization are
PrincipalPermission objects. They specify the identity and role that the user has to
possess in order to perform certain operation.

2.2. Code-based security

Beside the most common mechanisms of managing a user access basing on
credentials authentication and resource access restrictions, another perspective
needs to be taken into consideration as far as a security is concerned. This perspec-
tive embraces the code security as the protection of original source code of the
application from the malicious software that this source code is vital for the correct
operation of application and security of data it contains. The role-based security
mechanisms do not correspond to threats which the application code faces. That is
why another type of security based on the code access permissions needs to be
applied.

NET framework provides special mechanism called Code Access Security
(CAS) which disables the code from unknown sources to penetrate and interfere
with the application in an undesired manner [7, 8]. CAS is also helpful when it
comes to dealing with the vulnerabilities and errors located in the source code it-
self. In order to create the applications complying with CAS standards the develop-

173

ers need to acknowledge and obey certain rules regarding the code composition.
These rules refer to writing verifiable and type-safe code, using proper security
syntax and secure class libraries.

CAS security means that runtime environment allows the code to perform on-
ly those operations it has permissions. The configuration of permissions granted to
different parts of code enables to establish a security policy characteristic for every
separate application. Security policy refers to a set of rules which can be config-
ured and customized by the application developers. These rules enable the Com-
mon Language Environment to distinguish between parts of code of varying trust
levels and assign appropriate permissions to these parts of code. The parts of code
are called code groups and the entire code of the application may be divided into
code groups according to different categories like for instance original URL ad-
dresses, publishers or digital signatures.

Describing the security for NET platform in terms of CAS the concept of Se-
curity-Transparent Code arises. Security transparency means that the code should
be divided into two separate isolated parts — the part which runs as application and
the part which runs as its infrastructure. This enables to grant permissions to some
pieces of code which is the so called critical code, which will be able to execute
privileged actions such as calling native code, and other pieces of code which will
not have such permissions.

3. Security mechanisms of .NET environment for Web applications

The security mechanisms available in NET environment are commonly used
in Web applications [7, 8, 9]. The example application — Internet portal created to
analyze such mechanisms was written in ASP.NET technology.

The application, created in the framework of the presented works, was written
using the combination of ASP.NET and C# language. It incorporates most com-
monly used security mechanisms available in these technologies. The crucial secu-
rity aspects implemented in the application include user authentication mechanism
realized by means of registration and login forms, authorization for resource access
based on different roles assigned to users and sensitive data encryption using the
chosen standards. The major focus was put to the user security as code security is a
built-in feature realized equally in every .NET application.

The application is equipped with basic functionality characteristic for web ap-
plications, however the main focus was put on the implementations regarding the
security issues. Applied security mechanism include the authentication and author-
ization mechanisms realized by means of login and registration forms, encryption
of data and restricted access to the portal resources and operations.

The created application was designed to operate as a client-server application.
The users would be able to send requests from their client computers to the host

174

located on a remote server where the application core and database would be
stored. The system should be able to authenticate the users, authorize an access to
the application resources, display the data using graphical interface and process an
input given by the users.

From the point of view of the system and its administrators the vital aspect of
the application is the insurance of security of stored data especially sensitive per-
sonal information such as name, personal number, address, card ID, PIN-code, and
photograph to any unauthorized unit. It is also crucial to determine the acceptable
response times of the system and security policy.

The major concern regarded the storage of user personal data. This aspect re-
fers to almost any application having access to database and requiring authentica-
tion. NET Framework developers identified the need to automate and unify the
process of authentication and authorization and they introduced the so called Mem:-
bership tframework which is responsible for managing user accounts and roles.
However, Membership framework provides only basic functionality and it has to
be extended in order to comply with specific assumptions of the application.

Membership framework uses a pre-defined provider model in order to cus-
tomize database features to a standardized programming interface. In order to ad-
just Membership framework features a custom provider was defined. The frame-
work serves two built-in types of providers — Active DirectoryMembershipProvider
and Sq/MembershipProvider.

As the purpose of presented paper was to investigate the available solutions in
field of NET framework security mechanisms, the created example web applica-
tion incorporates several mechanisms responsible for guaranteeing security and
proper resource access to application users. The security policy is realized basing
on the options referring to the most commonly applied security methods:

¢ authentication of registered users,

o authorization of access to resources and operations basing on privileges,

e sensitive data encryption,

e code access security.

3.1. Authentication

Authentication is the process of validating user credentials and assigning priv-
ileges basing on those credentials. Authentication takes place every time the user
sends the request for protected resources or operations to the application server.
The way the server authenticates users depends on the pre-defined configuration
stored in Web.config file. The configuration takes place by specifying mode attrib-
ute of the <authentication> tag:

<authentication node = "Forms">
<forms loginUrl = "~/Account/LogIn"
timeout = "3000"

175

cookieless = "UseCookies"
protection = "Encryption"
requireSSL = "true"/>
</authentication>

The created web application uses the traditional Forms authentication mode.
Configuration of features available in this mode is realized by defining the attrib-
utes of the <form> tag. Forms authentication is based on assigning the tickets to
users who have been successfully identified. These tickets are sent to the applica-
tion server each time the user sends a request for resource. Having valid ticket the
user is perceived as logged in.

Tickets are most frequently stored in the cookies collection of a Web browser.
It is also possible no to use cookies and to store ticket information in the URL. This
is defined by setting the cookies attribute of <forms>.

Tickets are generated and issued to the user by the methods of FormsAuthen-
tication class being a part of System. Web.Security name-space. The cookie contain-
ing the ticket is included in the header of any request sent to the server (Fig. 3).
Another class of System. Web.Security — FormsAuthenticationModule is responsible
for examining the header of each request in search for a cookie containing a valid
ticket. In case no such cookie is found the module return a message with HT'TP 302
Redirect status meaning that the user cannot access the resource because he is not
logged in. In such case the user is redirected to the login page. Otherwise the au-
thentication is confirmed and further check for authorization privileges takes place.

The above description implies that there exist three possible scenarios for a
user trying to access a protected resource (Fig. 3). Either the user has a valid ticket
so the authentication will be successful or he will be redirected to the login page
where FormsAuthenticationModule will generate a valid ticket. The third option
refers to the situation when the user login will end in failure.

Because of the fact that tickets are stored in cookies there comes the notion of
timeouts. The cookies lose their validity after some time and so do the tickets con-
tained in them. To define the time after which a ticket will become invalid one has
to specify timeout attribute in the <forms> tag. This will increase the security of
the application because a user will not stay logged in for indefinite amount of time
which will prevent unauthorized units from using his accounts.

Other parameters specitying the security features are protection and requir-
eSSL attributes. Boolean value of requireSSL indicates whether secure SSL. con-
nection is necessary during the authentication process. Protection enables to select
type of security measure used to protect the ticket in the cookie. This attribute indi-
cates how the ticket will be sent — either in plain text or using encryption. Encryp-
tion may be done in two ways. Either by sending encrypted ticket to the server or
by generating message authentication code (MAC). MAC 1is a special representa-
tion of data contained within the ticket. In case of using this type of protection both
ticket — sent as plain text and MAC are included in the header of the request.

176

The server compares the received MAC with the text that came in. If the data cor-
respond to one another than the server knows that the cookie was not modified.

?

(Request for protected resource or operation was received by ASP.NET application)

i

Gormduurhen ticatianModule determines whether request contains ASP.NET authentication coolcr'ej

[ves] Successful auth enticatior}

[No]

E[Joes the request contain iv-heoder specifying whether the user wonts te lag in to the crpph'ccrn’on?j

Authentication failurejf

Login failure

Successful login
.

Figure 3. Activity diagram of authentication process

Authentication enables the server to tell authenticated users from guests and
on this basis the authorization of access to resources and operations is granted.

3.2. Authorization

Authorization is the process of assigning the privileges to specific users,
groups of users or actions. Basing on the user membership to defined the roles it is
possible to determine which resources and operations he can access.

System.Web.Security name-space contains a series of classes responsible for
the role managements. The core class Roles provides an interface for adding, delet-
ing roles, assigning users to roles, retrieving all roles the user is assigned to, etc.

177

The RoleManagerModule is a class responsible for creation of RolePrincipal object
during the authentication process and attaching this object to the context of the
current user. Thanks to RolePrincipal object which is another security class, it is
possible to extract information about roles the user belongs to by using Is/nRole()
method:
<roleManager enabled="true" defaultProvid-
er="SubsciptionPortalSglRoleProvider" cacheRolesCook-
ie="true">
<providers>
<clear/>
<add name="SubsciptionPortalSglRoleProvider"
type="System.Web.Security.SqglRoleProvider"
connectionString-
Name="SubsciptionPortalConnectionString"
applicationName="/" />
</providers>
</roleManager>

Another way to determine the user roles in runtime is to specify that role
names for a user could be cached in a session cookie. This improves the perfor-
mance of an application and can be done by setting the cacheRolesInCookie attrib-
ute of the <roleManager> tag. Similarly as in case of membership provider the
<roleManager> determines the schema for managing roles. If we want to use a
role-based authorization in our application the role manager ought to be enabled
and added to the role providers list. Role provider refers to the database schema for
managing the roles:

<location path="Customer/Basket.aspx">
<system.web>

<authorization>

<allow roles="Standard, Premium"/>
<allow users="*"/>

<deny roles="Distributor"/>
</authorization>

</system.web>

</location>

Authorization may be defined either in local Web.config files defined on the
package level or specified globally in the configuration file which was used until
now. The authorization may be defined at any level of resource complexity. It can
be specified for entire application, for separate packages or single resources like
web pages. To determine who is allowed to use the selected resource the properties
of <authentication> tag need to be set. These properties allow and deny the attrib-
utes which are given one of three additional parameters: users, roles and verbs.

178

Users enable to define specific users which can or cannot access resource.
Roles parameter allows restricting access for entire groups of users and verbs gives
the possibility to choose one of the three values: "GET", "POST" and "HEAD" in
order to restrict performing certain request. The verb parameter has to be always
accompanied by users or roles unless we want to restrict operations for all users —
which happens almost never. The parameters take user names or role names as
values, however there is additional option to indicate all users by writing "*" or
only anonymous users denoted by "?":

<location path="Customer/Discounts.aspx">
<system.web>

<authorization>

<allow roles="Admin, Premium"/>

<deny verbs="POST" roles="Standard"/>
<deny roles="Distributor"/>
</authorization>

</system.web>

</location>

The specification of resource we want to authorize is done by modifying the
path attribute in </ocation> tag. The value of an attribute may be an address of a
particular page or entire package. If particular user or role is neither denied nor
allowed an access to the resource by default such access is granted:

<location path="Administration">

<system.web>

<authorization>

<allow roles="Admin"/>

<deny roles="Distributor, Standard, Premium"/>
</authorization>

</system.web>

</location>

The process of authorization is a simple one and occurs after sending request
to the server. It results in one of two actions — either an access is granted or it is
denied (Fig. 4). The authentication ticket stored in the header of a request either
already contains user role or the server performs a check basing on obtained user
identity.

If the user is anonymous and the page requires authentication because it is a
protected resource, the user is redirected to the login page. This results from the
FormAuthenticationModule default behavior which returns HTTP 402 Redirect
status. In case of authenticated users the AuthorizationModule checks the user roles
and the resource permissions and returns a successful authorization result by redi-
recting the user to desired resource or returns HTTP 302 Error status indicating that
the user does not have adequate privileges.

179

?

(Request for protected resource or operation was received by ASP.NET applicatinnj

v

[Form.f-‘wrherrrl'carl'onh':'adu le determines whether request contains ASP.NET authentication CCH}ME]

[No]
[Yes]

Gihecking user identity and privilegeg

L

(Was the authorization Suocessful?g

>{ Request denial
[No] AT)
Access granted >é

Figure 4. Activity diagram of authorization process

The authorization process is vital when it comes to managing the application
resources in web application. It enables to distinguish between different types of
users who are allowed to perform and access only these operations they should.

4. Conclusion

The main focus put on the solutions provided by. NET platform which next to
Java is one of the most commonly used programming environments for both web
page and desktop application projects. The above description demonstrates how to
secure the application with basic security mechanisms in a simple and efficient
manner. The implemented functionalities provide valid fundamentals for building a
web application which would be resistant to the invalid user operations, provide
effective distribution of tasks which depend on the user roles and privileges as well
to the external attacks aiming to capture the sensitive personal data.

180

The authentication process which takes place every time is issued to the server
allows validating the source of the request and its credibility. The built-in code
access security mechanisms remain alert to the violation of the internal structure of
the application and will not allow any untrusted piece of code to penetrate inside
the application core. The unauthenticated user will not be allowed to get into privi-
leged sections of the application. Moreover, the authorization process prevents the
users from performing actions they are not allowed to perform and to access the
resources which are beyond the scope of their rights. This ensures that sensitive
data will only be visible to those for which they were designed for.

Basing on the conducted research referring to the security mechanisms for
NET platform it may be concluded that the tested environment provides the soft-
ware developers with reliable tools for software protection offering a board variety
of features which can be adjusted for the specific application purposes. It is rec-
ommended to study the requirements for the developed system in order to select
the most suitable authentication and authorization methods as well as to include
data encryption in every case where sensitive user information might be liable to
any potential threat. It should also be remembered that user security should go hand
in hand with code security as only the combination of these two will make the ap-
plication reliable, efficient and resistant to accidental and deliberate violations of
the security policy.

REFERENCES

[1] State of Web Application Security, Executive Summary, Ponemon Institute (2013).
[2] Pingdom AB (2013) Internet 2012 in numbers, Available at royal pingdom.com

[3] A. Getman The .NET Framework Security Model, Available at
www.codeproject.com/Articles/13947/The-NET-Framework-Security-Model

[4] Freeman A., Jones A. (2003) Programming .NET Security, O’Reilly Media, 2003.

[S] Sandhu R. S., Coyne E. J, Feinstein H. L., Youman C. E. (1996) Role-Based Access
Control Models, IEEE Computer, Vol. 29, No. 2, pp. 38-47.

[6] Ferraiolo D., Sandhu R. S., Gavrila S., Kuhn D. R. , Chandramouli R. (2001) Pro-
posed NIST Role-Based Access control, ACM TISSEC.

[71 Microsoft Corporation (2012) Security in .NET Framework, Available at
msdn.microsoft.com/en-us/library/fkytk30f

[8] Microsoft Corporation (2012) .NET Security Overview, Available at
msdn.microsoft.com/en-us/library/648652

[9] Freeman A., Jones A. (2004) Guide to Microsoft .NET Framework Security, National
Security Agency.

181

