PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variations of Strength, Resistivity and Thermal Parameters of Clay after High Temperature Treatment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports the variations of strength, resistivity and thermal parameters of clay after high-temperature heating. Experiments were carried out to test the physical properties of clay heated at temperatures ranging from room temperature to 800°C in a furnace. The experiment results show that below 400°C the uniaxial compressive strength and resistivity change very little. However, above 400°C, both increase rapidly. At a temperature under 400°C, the thermal conductivity and specific heat capacity decrease significantly. The thermogravimetric analysis (TG) and differential scanning calorimeter (DSC) test indicate that a series of changes occur in kaolinite at temperatures from 400 to 600°C, which is considered the primary cause of the variation of physical and mechanical properties of clay under high temperatures.
Czasopismo
Rocznik
Strony
2077--2091
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province, P.R. China
autor
  • School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province, P.R. China
autor
  • School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province, P.R. China
autor
  • School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province, P.R. China
Bibliografia
  • Abuel-Naga, H.M., D.T. Bergado, A. Bouazza, and M.J. Pender (2009), Thermal conductivity of soft Bangkok clay form laboratory and field measurements, Eng. Geol. 105, 3-4, 211-219, DOI: 10.1016/j.enggeo.2009.02.008.
  • Aparicio, P., and E. Galan (1999), Mineralogical interference on kaolinite crystallinity index measurements, Clay. Clay Miner. 47, 1, 12-27, DOI: 10.1346/ CCMN.1999.0470102.
  • Belloto, M., A. Gualtieri, G. Artioli, and S.-M. Clark (1995), Kinetic study of the kaolinite-mullite reaction sequence. Part II: Mullite formation, Phys. Chem. Minerals 22, 4, 215-222, DOI: 10.1007/BF00202254.
  • Cai, J.G. (2003), Oregano-clay complexes in muddy sediments and mudstones, Ph.D. Thesis, Tongji University, Shanghai (in Chinese).
  • Cai, J.G., Y.J. Bao, S.Y. Yang, X.X. Wang, D.D. Fan, J.L. Xu, and A.P. Wang (2007), Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone, Sci. China D 50, 5, 765-775, DOI: 10.1007/s11430-007-0005-0.
  • De Aza, A.H., X. Turrillas, M.A. Rodriguez, T. Duran, and P. Pena (2014), Timeresolved powder neutron diffraction study of the phase transformation se quence of kaolinite to mullite, J. Eur. Ceram. Soc. 34, 5, 1409-1421, DOI: 10.1016/j.jeurceramsoc.2013.10.034.
  • Dixon, D.A., M.N. Gray, and A.W. Thomas (1985), A study of the compaction properties of potential clay-sand buffer mixtures for use in nuclear fuel waste disposal, Eng. Geol. 21, 3-4, 247-255, DOI: 10.1016/0013-7952(85) 90015-8.
  • Dupray, F., C. Li, and L. Laloui (2013), Thermal conductivity of soft Bangkok clay form laboratory and field measurements, Eng. Geol. 163, 113-121, DOI: 10.1016/j.enggeo.2013.05.019.
  • Gens, A., L. do Guimarães, S. Olivella, and M. Sánchez (2010), Modelling thermohydro-mechano-chemical interactions for nuclear waste disposal, J. Rock Mech. Geotech. Eng. 2, 2, 97-102, DOI: 10.3724/SP.J.1235.2010.00097.
  • Hunt, J.M. (1996), Petroleum Geochemistry and Geology, 2nd ed., W.H. Freeman and Co., New York, 100 pp.
  • Laloui, L., and C. Cekerevac (2003), Thermo-plasticity of clays an isotropic yield mechanism, Comp. Geotech. 30, 8, 649-660, DOI: 10.1016/j.compgeo. 2003.09.001.
  • Lee, S., Y.J. Kim, and H.S. Moon (1999), Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope, J. Am. Ceram. Soc. 82, 10, 2841-2848, DOI: 10.1111/j.1151- 2916.1999.tb02165.x.
  • Li, Y., Q.C. Yu, B. Yang, and Y. Dai (2012), Characterization of vacuum thermal decomposed kaolin vacuum, Chin. J. Vacuum Sci. Tech. 32, 599-604 (in Chinese).
  • Mao, R.R., X.B. Mao, L.Y. Zhang, and R.X. Liu (2015), Effect of loading rates on the characteristics of thermal damage for mudstone under different temperatures, Int. J. Min. Sci. Technol. 25, 5, 797-801, DOI: 10.1016/j.ijmst. 2015.07.015
  • Melenevsky, V.N., A.E. Kontorovich, and W.L. Huang, A.I. Larichev, and T.A. Bul’bak (2009), Hydrothermal pyrolysis of organic matter in Riphean mudstone, Geochem. Int. 47, 5, 476-484, DOI: 10.1134/ S0016702909050048.
  • Monfared, M., J. Sulem, P. Delage, and M. Mohajerani (2011), A laboratory investigation on thermal properties of the opalinus claystone, Rock Mech. Rock Eng. 97, 735-747, DOI: 10.1007/s00603-0110-0171-4.
  • Nelskamp, S., P. David, and R. Littke (2008), A comparison of burial, maturity and temperature histories of selected wells from sedimentary basins in the Netherlands, Int. J. Earth Sci. 97, 5, 931-953, DOI: 10:1007/s00531-007- 0229-4.
  • O’Flaherty, C.A., and M.N. Gray (1974), The influence of alkali compounds on the compaction and early strength properties of lime-soil mixtures, Austral. Road Res. 5, 5, 4-15.
  • Peltonen, C., Ø. Marcussen, Bjørlykke, and J. Jahren (2009), Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties, Mar. Petrol. Geol. 26, 6, 887-898, DOI: 10.1016/ j.marpelgeo.2008.01.021.
  • Radhokrishra, H.S., and H.T. Chan (1989), Thermal and physical properties of candidate buffer-backfill material for a nuclear fuel waste disposal vault, Can. Geotech. 26, 6, 629-639, DOI: 10.1016/0148-9062(90)92830-8.
  • Sánchez, M., A. Shastri, and A. Gens (2011), Transient behavior of a clay barrier subjected to high temperature changes, Geo-Frontiers 2011, 4156-4165, DOI: 10.1061/41165(397)425.
  • Sato, T., T. Watanable, and Otsuka (1992), Effects of layer charge location and energy change on expansion properties of dioctahedral smectite, Clay. Clay Miner. 40, 1, 103-113, DOI: 10.1346/CCMN.1992.0400111.
  • Ślizowski, K., J. Janeczek, and K. Przewłocki (2003), Suitability of salt-mudstones as a host rock in salt domes for radioactive-waste storage, Appl. Energ. 75, 1-2, 119-128, DOI: 10.1016/S0140-6701(04)91754-7.
  • Sun, L.N., Z.N. Zhang, Y.D. Wu, L. Su, Y.Q. Xia, Z.D. Gao, Y.W. Zheng, and Z.X. Wang (2015a), Effect of temperature and pressure on hydrocarbon yield of source rock HTHP simulation experiment in semi-open system, Nat. Gas. Geosci. 26, 1, 118-127, DOI: 10.11764/j.issn.1672-1926.2015.01. 0118 (in Chinese).
  • Sun, Q., S.Y. Zhu, and L. Xue (2015b), Electrical resistivity variation in uniaxial rock compression, Arab. J. Geosci. 8, 4, 1869-1880, DOI: 10.1007/s12517- 014-1381-3.
  • Sundberg, J., P.E. Back, R. Christiansson, H. Hökmark, M. Ländell, and J. Wrafter (2009), Modeling of thermal rock mass properties at the potential sites of a Swedish nuclear waste repository, Int. J. Rock Mech. Min. Sci. 46, 6, 1042- 1054, DOI: 10.1016/j.ijrmms.2009.02.004.
  • Tian, H., M. Ziegler, and T. Kempka (2014), Physical and mechanical behavior of claystone exposed to temperatures up to 1000°C, Int. J. Rock Mech. Min. Sci. 70, 144-153, DOI: 10.1016/j.ijrmms.2014.04.014.
  • Witherspoon, P.A. (2001), Geological Challenges in Radioactive Waste Isolation, Third Word Rev., California, USA.
  • Wu, J.G., and H.W. Zhou (2008), Dynamic experimental research on phase transformation of Kaoliniteiteunder high temperature within microzone, Nonmetallic. Min. 31, 6, 10-13, DOI: 10.1016/j.clay.2013.07.017 (in Chinese).
  • Zhang, L.Y. (2012), Research on damage evolution and fracture mechanisms of mudstone under high temperature, Ph.D. Thesis, China. Univ. Min. Tech., Xuzhou (in Chinese).
  • Zhang, Z.Q., and R.Z. Yuan (1993), Study on dchydroxylation process of Kaolinite and its structural change, Bull. Chin. Ceramic Soc. 14, 37-41 (in Chinese).
  • Zheng, J.D., B.B. Chang, T.T. Chen, and J. Yin (2010), Study on the high temperature modification of attapulgite, Appl. Chem. Industry 39, 1835-1837 (in Chinese).
  • Zhu, H.J., X. Yao, and Z.H. Zhang (2008), Optimization of calcined temperature for Kaolinite activation, J. Build. Mater. 11, 621-625 (in Chinese).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77561749-96c2-4c2d-878b-11bbf62db75e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.