PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of software tool for manual assembly task analysis

Autorzy
Identyfikatory
Warianty tytułu
PL
Zastosowanie programu komputerowego do analizy zadań ręcznego montażu
Języki publikacji
EN
Abstrakty
EN
Manual assembly still play important role in production many products. In such kind of assembly worker has main role and because of this it is very important to take care about ergonomics of assembly workstation. To achieve good ergonomics of assembly workstation, various software tools can be used to simulate and analyse workplaces with respect to worker load. Paper describes using of software tool to analyse manual assembly workstation from point of view of ergonomics.
PL
Montaż ręczny nadal odgrywa ważną rolę w produkcji wielu produktów. W tego rodzaju montażu główną rolę odgrywa pracownik, dlatego bardzo ważne jest dbanie o ergonomię stanowiska montażowego. Aby osiągnąć dobrą ergonomię stanowiska montażowego, można zastosować różne narzędzia programowe do symulacji i analizy stanowisk pracy pod kątem obciążenia pracowników. W artykule opisano wykorzystanie narzędzia programowego do analizy stanowiska montażu ręcznego pod kątem ergonomii.
Rocznik
Strony
11--15
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Department of Automotive Production, Faculty of Mechanical Engineering, Technical University of Kosice, Slovak Republic
Bibliografia
  • [1] Leber, M.; Bastic, M.; Moody, L.; Schmidt Krajnc, M. (2018). A study of the impact of ergonomically designed workplaces on employee productivity, Advances in Production Engineering & Management, Vol. 13, No. 1, 107-117, https://doi.org/10.14743/ apem2018.1.277.
  • [2] Falck, A.C., Ortengren, R., Hogberg, D. (2010). The Impact of Poor Assembly Ergonomics on Product Quality: A Cost-Benefit Analysis in Car Manufacturing, Human Factors and Ergonomics in Manufacturing & Service Industries, Vol. 20, Issue1, 24-41, DOI10.1002/hfm.20172
  • [3] Falck, A.C., Ortengren, R., Rosenqvist, M. (2014). Assembly failures and action cost in relation to complexity level and assembly ergonomics in manual assembly (part 2). International Journal of Industrial Ergonomics, Vol. 44, Issue3, 455-459, DOI10.1016/j. ergon.2014.02.001
  • [4] Kumar, R.; Banga, H. K.; Kumar, R.; Singh, S.; Singh, S.; Scutaru, M.L.; Pruncu, C.I. (2021). Ergonomic evaluation of workstation design using taguchi experimental approach: a case of an automotive industry, International Journal on Interactive Design and Manufacturing (IJIDeM), Vol. 15, No. 4, 481–498, https://doi. org/10.1007/s12008-021-00776-y
  • [5] Battini, D., Faccio, M., Persona, A., Sgarbossa, F. (2011). New methodological framework to improve productivity and ergonomics in assembly system design. INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, Vol. 41, Issue1, 30-42, DOI10.1016/j. ergon.2010.12.001
  • [6] Enomoto, A., Yamamoto, N., Suzuki, T. (2013). Automatic estimation of the ergonomics parameters of assembly operations. CIRP Annals, Vol. 62, Issue 1, 13-16, ISSN 0007-8506, https://doi. org/10.1016/j.cirp.2013.03.038.
  • [7] Ng, L.X., Wang, Z.B., Ong, S.K. and Nee, A.Y.C. (2013), Integrated product design and assembly planning in an augmented reality environment. Assembly Automation, Vol. 33 No. 4, 345-359. https://doi.org/10.1108/AA-10-2012-058.
  • [8] Oyekan, J., Chen, Y., Turner, C., Tiwari, A. (2021). Applying a fusion of wearable sensors and a cognitive inspired architecture to real- -time ergonomics analysis of manual assembly tasks. Journal of Manufacturing Systems, Vol. 61, Pp. 391-405, ISSN 0278-6125, https://doi.org/10.1016/j.jmsy.2021.09.015.
  • [9] Kruger, J., Nguyen, T.D. (2015). Automated vision-based live ergonomics analysis in assembly operations. CIRP Annals- -Manufacturing Technology, Vol. 64, Issue1, 9-12, DOI10.1016/j. cirp.2015.04.046
  • [10] Turk, M.; Pipan, M.; Simic, M.; Herakovic, N. (2020). Simulation- -based time evaluation of basic manual assembly tasks, Advances in Production Engineering & Management, Vol. 15, No. 3, 331- 344, https://doi.org/10.14743/apem2020.3.369.
  • [11] Mgbemena, C.E., Tiwari, A., Xu, Y.C., Prabhu, V., Hutabarat, W. (2020). Ergonomic evaluation on the manufacturing shop floor: A review of hardware and software technologies. CIRP Journal of Manufacturing Science and Technology, Vol. 30, 68-78, DOI10.1016/j.cirpj.2020.04.003
  • [12] Dupláková, D., Knapčíková, L., Radchenko, S., Hatala, M. (2017). Software Support of Modelling using Ergonomic Tools in Engineering. TEM Journal, Vol. 6, Issue 3, 567-571, ISSN 2217-8309, DOI: 10.18421/TEM63-18.
  • [13] Polášek, P., Bureš M., Šimon, M. (2015). Comparison of Digital Tools for Ergonomics in Practice. Procedia Engineering, Vol. 100, 1277-1285, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2015.01.494.
  • [14] Grandi, F., Cavallaro, S., Peruzzini, M., Raffaeli, R., Pellicciari, M. (2021). Benchmark on Human Simulation Tools: A Transdisciplinary Approach. Advances in Transdisciplinary Engineering - Transdisciplinary Engineering for Resilience: Responding to System Disruptions, Vol. 16, 345 – 354, DOI 10.3233/ATDE210114.
  • [15] Lamkull, D., Hanson, L., Ortengren, R. (2009). A comparative study of digital human modelling simulation results and their outcomes in reality: A case study within manual assembly of automobiles. International Journal of Industrial Ergonomics. Vol. 39, Issue2, 428-441, DOI10.1016/j.ergon.2008.10.005.
  • [16] Nejedlá, M., Tesařová, H. (2013). 3D simulation tool for evaluation of ergonomics at work. Vlakna a Textil. Vol,20, Issue 3, 28 – 40, ISSN 1335-0617.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77520733-6ad8-4305-b044-cfdd2c9bd700
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.