PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Rutile to tourmaline index – a tool for the recognition of the hydrodynamics of the depositional environment; a case study from the Campanian Szozdy Delta System, SE Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The newly discovered mid-Campanian Szozdy Delta System (Roztocze Hills, SE Poland) located in the south-ern part of the Polish Cretaceous Basin, at the northern edge of the Łysogóry-Dobrogea Land, has revealed in-teresting features concerning the relationship between the abundance of rutile and tourmaline. A distinct inverse relationship between rutile and tourmaline can be readily recognised in the succeeding units of the tripartite cyclothems (calcareous mudstone, calcareous sandstone, and calcareous gaize) representing the submarine part of the Szozdy Delta System. In the Szozdy section, both minerals are of similar shape (highly rounded), dura-bility, and size; they are, however, characterised by markedly different densities. Therefore, it might be expected that these two mineral phases will be strongly dependent, both vertically and spatially, on the local energy of the sedimentary environment hydrodynamic power that existed during the deposition of the succeeding units of the cyclothems. The lighter tourmaline was likely transported further to the more quiescent prodelta environment, rendering the prodelta facies overrepresented in this mineral, whereas the heavier rutile was deposited closer to the river discharge. Such relative change in the abundance of these two mineral phases, emphasised by a standardised Z-score statistics, is referred here to as rutile to tourmaline index (RuTidx). Accordingly, as the RuTidx increases, the hydrodynamic power in the sedimentary environment increases as well. Since these two mineral phases are comparatively immune to alteration during the sedimentary cycle, the RuTidx is considered here to be an independent tool in recognising the hydrodynamics of the depositional environments of any age.
Rocznik
Strony
833--851
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury
  • Polish Geological Institute-National Research Institute
  • University of Warsaw, Faculty of Geology, Żwirki i Wigury
Bibliografia
  • 1. Ahrens, J.P. 2000. A fall-velocity equation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126, 99–102.
  • 2. Błaszkiewicz, A. 1980. Campanian and Maastrichtian ammonites of the Middle Vistula River valley, Poland: a stratigraphic and paleontological study. Prace Instytutu Geologicznego, 92, 1–63.
  • 3. Cascalho, J. and Fradique, C. 2007. The sources and hydraulic sorting of heavy minerals on the northern Portuguese continental margin. Developments in Sedimentology, 58, 75–107.
  • 4. Cheng, N.S. 1997. Simplified settling velocity formula for sedi ment particle. Journal of Hydraulic Engineering, 123, 149–152.
  • 5. Cyglicki, M. and Remin, Z. submitted. Composition of heavy minerals from the Late Cretaceous Szozdy Delta system, southeastern Polish Basin – implications for source rocks. Geological Quarterly.
  • 6. Dadlez, R., Marek, S. and Pokorski, J. (Eds). 1998. Paleographical Atlas of the Epicontinental Permian and Mesozoic in Poland (1:2 500 000). Polish Geological Institute; Warszawa, Poland. [In Polish]
  • 7. Dadlez, R., Marek, S. and Pokorski, J. (Eds). 2000. Geological map of Poland without Cenozoic deposits at 1:1 000 000 scale. Polish Geological Institute; Warszawa, Poland. [In Polish]
  • 8. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M. and van Wess, J.D. 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252, 179–195.
  • 9. Dietrich, W.E. 1982. Settling velocity of natural particles. Water Resources Research, 18, 1615–1626.
  • 10. Dubicka, Z. 2015. Benthic foraminiferal biostratigraphy of the lower and middle Campanian of the Polish Lowlands and its application for interregional correlation. Cretaceous Research, 56, 491–503.
  • 11. Christensen, W.K. 1997b. Palaeobiogeography and migration in the Late Cretaceous belemnite family Belemnitellidae. Acta Palaeontologica Polonica, 42, 457–495.
  • 12. Ferguson, R.I. and Church, M. 2004. A simple universal equation for grain settling velocity. Journal of Sedimentary Research, 74, 933–937.
  • 13. Frihy, O.E. 2007. The Nile Delta: processes of heavy mineral sorting and depositional patterns. Developments in Sedimentology, 58, 49–74.
  • 14. Galehouse, J.S. 1971. Point counting. In: Carver, R.E. (Ed.), Procedures in Sedimentary Petrology, 385–407. Wiley; New York.
  • 15. Garzanti, E. 2017. The maturity myth in sedimentology and provenance analysis. Journal of Sedimentary Research, 87, 353–365.
  • 16. Garzanti, E. and Andò, S. 2007. Heavy mineral concentration in modern sands: implications for provenance interpretation. Developments in Sedimentology, 58, 517–545.
  • 17. Garzanti, E. and Andò, S. 2019. Heavy minerals for Junior Woodchucks. Minerals, 9, 148, 1–25.
  • 18. Hallermeier, R.J. 1981. Terminal settling velocity of commonly occurring sand grains. Sedimentology, 28, 859–865.
  • 19. Hammer, Ø. and Harper, D.A.T. 2006. Paleontological Data Analysis, 351 pp. Blackwell Publishing; Malden, Oxford, Carlton.
  • 20. Hubert, J.F. 1962. A zircon-tourmaline-rutile maturity index and interdependence of the composition of heavy mineral assemblages with the gross composition and textures of sandstones. Journal of Sedimentary Research, 32, 440–450.
  • 21. Kley, J. and Voigt, T. 2008. Late Cretaceous intraplate thrusting in Central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36, 839–842.
  • 22. Komar, P.D. 2007. The entrainment, transport and sorting of heavy minerals by waves and currents. Developments in Sedimentology, 58, 3–48.
  • 23. Komar, P.D. and Wang, C. 1984. Processes of selective grain transport and the formation of placers on beaches. The Journal of Geology, 92, 637–655.
  • 24. Krzywiec, P. 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough – lateral variations in timing and structural style. Geological Quarterly, 50, 151–168.
  • 25. Krzywiec, P. 2009. Devonian–Cretaceous repeated subsidence and uplift along the Teisseyre–Tornquist zone in SE Poland – insight from seismic data interpretation. Tectonophysics, 475, 142–159.
  • 26. Krzywiec, P. and Stachowska, A. 2016. Late Cretaceous inversion of the NW segment of the Mid-Polish Trough – how marginal troughs were formed, and does it matter at all?
  • 27. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 167, 107–119.
  • 28. Krzywiec, P., Stachowska, A. and Stypa, A. 2018. The only way is up – on Mesozoic uplifts and basin inversion events in SE Poland. Geological Society Special Publications, 469, 33–57.
  • 29. Leszczyński, K. 1997. The Upper Cretaceous carbonate-dominated sequences of the Polish Lowlands. Geological Quarterly, 41, 521–532.
  • 30. Leszczyński, K. 2010. Lithofacies evolution of the Late Cretaceous basin in the Polish Lowlands. Biuletyn Państwowego Instytutu Geologicznego, 443, 33–54. [In Polish with English summary]
  • 31. Leszczyński, K. 2012. The internal geometry and lithofacies pattern of the Upper Cretaceous–Danian sequence in the Polish Lowlands. Geological Quarterly, 56, 363–386.
  • 32. Leszczyński, K. and Dadlez, R. 1999. Subsidence and the problem of incipient inversion in the Mid-Polish Trough based on thickness maps and Cretaceous lithofacies analysis – discussion. Przegląd Geologiczny, 47, 625–628. [In Polish with English summary]
  • 33. Mange, M.A. and Maurer, H.F.W. 1992. Heavy mineral in color, 147 pp. Chapman and Hall; London.
  • 34. Miller, R.L. and Byrne, R.J. 1966. The angle of repose of a single grain on a fixed rough bed. Sedimentology, 6, 303–314.
  • 35. Morton, A.C. and Hallsworth, C. 1994. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90, 241–256.
  • 36. Morton, A.C. and Hallsworth, C. 1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3–29.
  • 37. Morton, A.C. and Hallsworth, C. 2007. Stability of detrital heavy minerals during burial diagenesis. Developments in sedimentology, 58, 215–245.
  • 38. Nauton‐Fourteu, M., Tyrrell, S. and Morton, A. 2021. Heavy mineral variations in mid‐Carboniferous deltaic sand-stones: Records of a pre‐depositional sediment history? The Depositional Record, 7, 52–63.
  • 39. Nielsen, S.B. and Hansen, D.L. 2000. Physical explanation of the formation and evolution of inversion zones and marginal troughs. Geology, 28, 875–878.
  • 40. Odin, G.S. and Lamaurelle, M.A. 2001. The global Campanian-Maastrichtian stage boundary. Episodes, 24, 229–238.
  • 41. Olszewska, D. 1990. Belemnites from the Upper Cretaceous chalk of Mielnik (eastern Poland). Acta Geologica Polonica, 40, 111–110.
  • 42. Remin, Z. 2012. The Belemnella stratigraphy of the Campanian–Maastrichtian boundary; a new methodological and taxonomic approach. Acta Geologica Polonica, 62, 495–533.
  • 43. Remin, Z. 2015. The Belemnitella stratigraphy of the Upper Campanian – basal Maastrichtian of the Middle Vistula section, central Poland. Geological Quarterly, 59, 783–813.
  • 44. Remin, Z. 2018. Understanding coleoid migration patterns between eastern and western Europe – belemnite faunas from the upper lower Maastrichtian of Hrebenne, southeast Poland. Cretaceous Research, 87, 368–384.
  • 45. Remin, Z., Dubicka, Z., Kozłowska, A. and Kuchta, B. 2012. A new method of rock disintegration and foraminiferal extraction with the use of liquid nitrogen [LN2]. Do conventional methods lead to biased paleoecological and paleo-environmental interpretations? Marine Micropaleontology, 86, 11–14.
  • 46. Remin, Z., Cyglicki, M., Cybula, M. and Roszkowska-Remin, J. 2015a. Deep versus shallow? Deltaically influenced sedimentation and new transport directions – case study from the Upper Campanian of the Roztocze Hills, SE Poland. In: Proceedings of the 31st IAS Meeting of Sedimentology, Kraków, Poland, p. 438. Polish Geological Society; Kraków.
  • 47. Remin, Z., Machalski, M. and Jagt, J.W.M. 2015b. The strati- graphically earliest record of Diplomoceras cylindraceum (heteromorph ammonite) – implications for Campanian/Maastrichtian boundary definition. Geological Quarterly, 59, 843–848.
  • 48. Remin, Z., Gruszczyński, M. and Marshall, J.D. 2016. Changes in paleo-circulation and the distribution of ammonite faunas at the Coniacian–Santonian transition in central Poland and western Ukraine. Acta Geologica Polonica, 66, 107–124.
  • 49. Remin, Z., Cyglicki, M. and Niechwedowicz, M. 2022a. Deep vs. shallow – two contrasting theories? A tectonically activated Late Cretaceous deltaic system in the axial part of the Mid-Polish Trough: a case study from southeast Poland. Solid Earth, 13, 681–703.
  • 50. Remin, Z., Krzywiec, P. and Stachowska, A. 2022b. Late Cretaceous inversion of SE Polish Basin – syn-depositional tectonics, facies distribution and bathymetric changes. In:
  • 51. Walaszczyk, I. and Todes, J. (Eds), Cretaceous of Poland and of adjacent areas. Field trip Guides, 87–114. Faculty of Geology, University of Warsaw; Poland.
  • 52. Ryan, P.D., Mange, M.A. and Dewey, J.F. 2007. Statistical analysis of high-resolution heavy minerals stratigraphic data from Ordovician of western Ireland and its tectonic consequences. Developments in Sedimentology, 58, 465–489.
  • 53. Świdrowska, J. 2007. Cretaceous in Lublin area – sedimentation and tectonic conditions (in Polish with English summary). Biuletyn Instytutu Geologicznego, 422, 63–78.
  • 54. Voigt, T., Kley, J. and Voigt, S. 2021. Dawn and dusk of Late Cretaceous basin inversion in Central Europe. Solid Earth, 12, 1443–1471.
  • 55. Walaszczyk, I. 2004. Inoceramids and inoceramid biostratigraphy of the Upper Campanian to basal Maastrichtian of the Middle Vistula River section, central Poland. Acta Geologica Polonica, 54, 95–168.
  • 56. Walaszczyk, I. and Remin, Z. 2015. Kreda obrzeżenia Gór Świętokrzyskich. In: Skompski, S. (Ed.), LXXXIV Zjazd Polskiego Towarzystwa Geologicznego; Chęciny, 9–11 września, 2015, pp. 41–50. Państwowy Instytut Geologiczny-PIB; Warszawa.
  • 57. Walaszczyk, I., Dubicka, Z., Olszewska-Nejbert, D. and Remin, Z. 2016. Integrated biostratigraphy of the Santonian through Maastrichtian (Upper Cretaceous) of extra-Carpathian Poland. Acta Geologica Polonica, 66, 313–350.
  • 58. Yalin, M.S. 1972. Mechanics of sediment transport. 290 pp. Pergamon Press; Oxford, United Kingdom.
  • 59. Ziegler, P.A. 1990. Geological Atlas of Western and Central Europe, 2 nd Edition, 239 pp. Shell Internationale Petroleum Maatschappij and the Geological Society; The Hague and London.
  • 60. Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J. and Żytko, K. 2011. Regionalizacja tektoniczna Polski, 60 pp. Komitet Nauk Geologicznych; Wrocław.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7751aea6-3093-478f-81d1-8063c8f9adca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.