PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on the Effect of Technological Parameters on Emission Factor in 316L Stainless Steel Using Gas Metal Arc Welding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Growing awareness for occupational safety in the welding environment needs a sustainable welding system. Welding gases releases toxic tiny particles and gases that inflict severe health consequences in the weld zone are unsolicited. Some of the other main adverse effects are lung disease, hemoptysis, pulmonary inflammation, pneumoconiosis, etc. GMAW procedure has been used for welding 316L stainless steel plates of 3 mm, 5 mm, and 6 mm. Various current configurations with gas flow rate of 5 LPM, 10 LPM and 15 LPM were also used to achieve optimum butt joint performance and to reduce the production rate of fume contributing to cost-effectiveness. In this research a cost-effective fume extraction hood was fabricated for measuring emission factor produced during welding. Various shielding gas compositions including Pure Argon, Pure CO2, 92% Ar+8% CO2 and 88% Ar+12% CO2were used to determine the best operating parameters in the GMAW method. To satisfy the latest Permissible Exposure Limit (PEL) legislation, optimum technical parameters for efficient welding were acknowledged with the lowest emission factor. A maximum reduction of emission factor can be achieved by using Pure Argon. The inclusion of CO2 as a shielding gas mixture gives higher emission factor when compared to Pure Argon. Very low emission factor were witnessed in this research when compared to previous investigations. Lower emission factor of 2941.17 mg /kg of electrode, 4411.76 mg/kg of electrode and 7352.94 mg/kg of electrode were obtained for pure argon as shielding gas with 150 A welding current.
Twórcy
  • Department oF Mechanical Engineering, Kongu Engineering College, Erode - 638060, Tamilnadu, India
  • Department of Chemistry, Vivekanandha College of Arts & Sciences for Women, Tiruchengode - 637205, Tamilnadu, India
  • Department oF Mechanical Engineering, Kongu Engineering College, Erode - 638060, Tamilnadu, India
  • Department oF Mechanical Engineering, Kongu Engineering College, Erode - 638060, Tamilnadu, India
  • Department oF Mechanical Engineering, Kongu Engineering College, Erode - 638060, Tamilnadu, India
autor
  • Department oF Mechanical Engineering, Kongu Engineering College, Erode - 638060, Tamilnadu, India
Bibliografia
  • [1] P. C. Albuquerque, J. F. Gomes, C. A. Pereira, J. Cleaner Prod. 89, 296-300 (2015). https://doi.org/10.1016/j.jclepro.2014.11.010
  • [2] M. Boselli, V. Colombo, E. Ghedini, M. Gherardi, P. Sanibondi, J. Phys. D: Appl. Phys. 46 (22), 224006 (2013). http://dx.doi.org/10.1088/0022-3727/46/22/224006
  • [3] L. Costa, Weld. Int. 28 (9),700-707 (2013).
  • [4] A. A. Ennan, S. A. Kiro, M. V. Oprya, V. I. Vishnyakov, J. Aerosol. Sci. 64, 103-110 (2013). https://doi.org/10.1016/j.jaerosci.2013.06.006
  • [5] R. R. Kannan, S. P. Sivapirakasam, B. R. Vishnu, M. Rahul, S. Mohan, Mater. Today.: Proc. 29 (3), 2052-2055 (2020). https://doi.org/10.1016/j.matpr.2019.09.057
  • [6] M. J. Keane, A. Siert, B. T. Chen, S. G. Stone, Ann. Occup. Hyg. 58 (4), 403-412 (2014). https://doi.org/10.1093/annhyg/meu007
  • [7] S. Mohan, S. P. Sivapirakasam, M. S. Kumar, M. Surianarayanan, J. Mater. Process. Technol. 219, 237-247 (2015). https://doi.org/10.1016/j.jmatprotec.2014.12.020
  • [8] I. Pires, L. Quintino, V. Amaral, T. Rosado, Int. J. Adv. Manuf. Technol. 50 (5-8), 557-567 (2010). https://doi.org/567.10.1007/s00170-010-2551-4
  • [9] I. Pires, L. Quintino, R. M. Miranda, J. F. P. Gomes, Toxicol. Environ. Chem. 88 (3), 385-394 (2006). https://doi.org/10.1080/02772240600720472
  • [10] I. Pires, L. Quintino, R. M. Miranda. Mater. Des. 28 (5), 1623-1631 (2007). https://doi.org/10.1016/j.matdes.2006.02.012
  • [11] Z. Sterjovski, J. Norrish, B. J. Monaghan, Weld. World 54 (9-10), R249-R256 (2010). https://doi.org/10.1007/BF03266737
  • [12] S. Tashiro, T. Zeniya, K. Yamamoto, M. Tanaka, K. Nakata, A. B. Murphy, E. Yamamoto, K. Yamazaki, K. Suzuki, J. Phys. D: Appl. Phys. 43 (43), 434012 (2010). https://doi.org/10.1088/0022-3727/43/43/434012
  • [13] B. R. Vishnu, S. P. Sivapirakasam, K. K. Satpathy, S. K. Albert, G. Chakraborty, Process Saf. Environ. Prot. 114, 334-346 (2018). https://doi.org/10.1016/j.psep.2018.01.003
  • [14] V. I. Vishnyakov, S. A. Kiro, M. V. Oprya, A. A. Ennan, J. Aerosol Sci. 76, 138-147 (2014). https://doi.org/10.1016/j.jaerosci.2014.06.010
  • [15] V. I. Vishnyakov, S. A. Kiro, M. V. Oprya, O. D. Chursina, A. A. Ennan, Aerosol Sci. Eng. 2 (3), 109-117 (2018). https://doi.org/10.1007/s41810-018-0028-2
  • [16] H. Xin, Z. Geng, T. H. North. Weld J. 80 (7), 173-183 (2001).
  • [17] J. H. Yi, J. Korean Phy. Sci. 67 (5), 832-836 (2015).
  • [18] K. M. Yu, N. Topham, J. Wang, M. Kalivoda, Y. Tseng, C. Y. Wu, W. J. Lee, K. Cho, J. Hazard. Mater. 185 (2-3), 1587-1591 (2011).
  • [19] A. T. Zimmer, P. Biswas, Characterization of the aerosols resulting from arc welding processes, J. Aerosol Sci. 32 (8), 993-1008 (2001). (2001). https://doi.org/10.1016/S0021-8502(01)00035-0
  • [20] A. T. Zimmer, P. A. Baron, P. Biswas. J. Aerosol Sci. 33 (3), 519-531 (2002). https://doi.org/10.1016/S0021-8502(01)00189-6
Uwagi
1. The authors would like to thank Kongu Engineering College for extending laboratory facilities towards successful completion of this research work.
2. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77510462-ef44-4ced-aa8e-db81a0ed31ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.