PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified logarithmic distribution of wind-driven flow velocity in remote foreshore of the non-tidal sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of the novel modelling of the wind-driven current in the southern Baltic Sea. The steady current is accompanied by wave-induced orbital velocities. The bed boundary layer related to wave-induced oscillatory flow gives rise to the appearance of additional shear stresses affecting the wind-driven current. This impact included in the wind-driven current model yields a modified logarithmic velocity distribution. Theoretical velocity profiles are compared with the field data. The measurement database includes wind, wave and current parameters. The velocities and directions of the wind were collected from the anemometer installed at the Coastal Research Station (CRS) in Lubiatowo. Wave-current parameters at a depth of about 17 m were obtained from a location of approx. 1.5 Nm from the shoreline in the vicinity of CRS Lubiatowo. The study site hydrodynamics is typical of the south Baltic coast. The analysis shows good agreement between the measured flow velocities and the theoretical vertical distributions in the form of the modified logarithmic profile.
Czasopismo
Rocznik
Strony
556--563
Opis fizyczny
Bibliogr. 30 poz., map., wykr.
Twórcy
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
  • Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
  • 1. Baas, J., Malarkey, J., Lichtman, I., Amoudry, L., Thorne, P., Hope, J., Peakall, J., Paterson, D., Bass, S., Cooke, R., Manning, A., Parsons, D., Ye, L., 2021. Current- and Wave-Generated Bedforms on Mixed Sand-Clay Intertidal Flats: A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential. Front. Earth Sci. 9. https://doi.org/10.3389/ feart.2021.747567
  • 2. Birkemeier, W.A., 1985. Field data on seaward limit of profile change. J. Waterw. Port C. 111 (3), 598-602. https://doi.org/ 10.1061/(ASCE)0733-950X(1985)111:3(598)
  • 3. Cerkowniak, G.R., Ostrowski, R., Stella, M., 2015a. Depth of closure in the multi-bar non-tidal nearshore zone of the Baltic Sea: Lubiatowo (Poland) case study. Bull. Marit. Inst. Gdańsk 30 (1), 180-188. http://doi.org/10.5604/12307424.1185577.
  • 4. Cerkowniak, G.R., Ostrowski, R., Stella, M., 2015b. Wave-Induced Sediment Motion Beyond the Surf Zone: Case Study of Lubiatowo (Poland). Arch. Hydro-Eng. Environ. Mech. 62 (1-2), 27- 39. https://doi.org/10.1515/heem-2015-0017
  • 5. Cerkowniak, G.R., Ostrowski, R., Pruszak, Z., 2017. Application of Dean’s curve to the investigation of the long-term evolution of the southern Baltic multi-bar shore profile. Oceanologia 59 (1), 18-27. https://doi.org/10.1016/j.oceano.2016.06.001
  • 6. Dean, R.G., 2002. Beach Nourishment. Theory and Practice. Advanced Series on Ocean Engineering - Volume 18. World Sci. Publ., 399 pp. https://doi.org/10.1142/2160
  • 7. Egan, G., Cowherd, M., Fringer, O., Monismith, S., 2019. Observations of near-bed shear stress in a shallow, wave- and current driven flow. J. Geophys. Res. Oceans 124, 6323-6344. https://doi.org/10.1029/2019JC015165
  • 8. Fredsøe, J., 1984. Turbulent boundary layer in combined wave-current motion. J. Hydraul. Eng. 110 (HY8), 1103-1120. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:8(1103) 562 Oceanologia 65 (2023) 556-563
  • 9. Grant, W.D., Madsen, O.S., 1979. Combined wave and current interaction with a rough bottom. J. Geophys. Res. Oceans 84 (C4), 1797-1808. https://doi.org/10.1029/JC084iC04p01797
  • 10. Hallermeier, R.J., 1978. Uses for a calculated limit depth to beach erosion. In: Proceedings of 16th Coastal Engineering Conference, Am. Soc. Civil Eng., 1493-1512. https://doi.org/10.9753/icce.v16.88
  • 11. Hallermeier, R.J., 1981. A profile zonation for seasonal sand beaches from wave climate. Coastal Eng. 4 (3), 253-277. https://doi.org/10.1016/0378-3839(80)90022-8
  • 12. Kemp, P., Simons, R., 1982. The interaction between waves and a turbulent current: Waves propagating with the current. J. Fluid Mech. 116, 227-250. https://doi.org/10.1017/S0022112082000445
  • 13. Krauss, W., 2001. Baltic Sea circulation. Encyclopedia of Ocean Sciences. https://doi.org/10.1006/rwos.2001.0381
  • 14. Lacy, J.R., Rubin, D.M., Ikeda, H., Mokudai, K., Hanes, D.M., 2007. Bed forms created by simulated waves and currents in a large flume. J. Geophys. Res. 112, C10018. https://doi.org/10.1029/2006JC003942
  • 15. Lim, K.Y., Madsen, O.S., 2016. An experimental study on near orthogonal wave-current interaction over smooth and uniform fixed roughness beds. Coastal Eng. 116, 258-274. https://doi.org/10.1016/j.coastaleng.2016.05.005
  • 16. Malarkey, J., Davies, A.G., 1998. Modelling wave-current interactions in rough turbulent bottom boundary layers. Ocean Eng. 25, 119-141. https://doi.org/10.1016/S0029-8018(96)00062-5
  • 17. Meyer, Z., 2009. Modified Logarithmic Tachoida Applied to Sediment Transport in a River. Acta Geophysica 57 (3), 743-759. https:// doi.org/10.2478/s11600-009-0010-0
  • 18. Nielsen, P., 1992. Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering - Vol. 4. World Sci. Publ. 340 pp. https://doi.org/10.1142/1269
  • 19. Nielsen, P., 2009. Coastal and Estuarine Processes. Advanced Series on Ocean Engineering - Vol. 29. World Sci. Publ. 360 pp. https://doi.org/10.1142/7114
  • 20. Ostrowski, R., Schönhofer, J., Szmytkiewicz, P., 2016. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo. Poland. J. Marine Syst. 162, 89-97. https://doi.org/10.1016/j.jmarsys.2015.10. 006
  • 21. Ostrowski, R., Stella, M., 2020. Potential dynamics of non-tidal sea bed in remote foreshore under waves and currents. Ocean Eng. 207, 107398. https://doi.org/10.1016/j.oceaneng.2020.107398
  • 22. Ostrowski, R., Stella, M., Szmytkiewicz, P., Kapiński, J., Marcinkowski, T., 2018. Coastal hydrodynamics beyond the surf zone of the south Baltic Sea. Oceanologia 60 (3), 264-276. https://doi.org/10.1016/j.oceano.2017.11.007
  • 23. Pruszak, Z., Szmytkiewicz, P., Ostrowski, R., Skaja, M., Szmytkiewicz, M., 2008. Shallow-water wave energy dissipation in a multi-bar coastal zone. Oceanologia 50 (1), 43- 58.
  • 24. Rudowski, S., Łeczyński, ´ L., Gajewski, Ł., 2008. Fale piaszczyste na dnie głębokiego przybrzeża i ich rola w kształtowaniu brzegu. Landform Analysis 9, 214-216.
  • 25. Sokolov, A., Chubarenko, B., 2012. Wind Influence on the Formation of Nearshore Currents in the Southern Baltic: Numerical Modelling Results. Arch. Hydro-Eng. Environ. Mech. 59 (1-2), 37-48. https://doi.org/10.2478/v10203-012-0003-3
  • 26. Stella, M., 2021. Morphodynamics of the south Baltic seabed in the remote nearshore zone in the light of field measurements. Mar. Geol. 439, 106546. https://doi.org/10.1016/j. margeo.2021.106546
  • 27. Stella, M., Ostrowski, R., Szmytkiewicz, P., Kapiński, J., Marcinkowski, T., 2019. Driving forces of sandy sediment transport beyond the surf zone. Oceanologia 61 (1), 50-59. https://doi.org/10.1016/j.oceano.2018.06.003
  • 28. Trzeciak, S., 2000. Marine Meteorology with Oceanography. Wydawnictwo Naukowe PWN, 249 pp. (in Polish).
  • 29. Valle-Levinson, A., 2016. Lecture 13. Equations of Motion. http://www.essie.ufl.edu/∼arnoldo/ocp6050/notes_pdf/
  • 30. Wiberg, P.L., 2005. Wave-Current Interaction. In: Schwartz, M.L. (Ed.), Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_343
  • 1. Baas, J., Malarkey, J., Lichtman, I., Amoudry, L., Thorne, P., Hope, J., Peakall, J., Paterson, D., Bass, S., Cooke, R., Manning, A., Parsons, D., Ye, L., 2021. Current- and Wave-Generated Bedforms on Mixed Sand-Clay Intertidal Flats: A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential. Front. Earth Sci. 9. https://doi.org/10.3389/ feart.2021.747567
  • 2. Birkemeier, W.A., 1985. Field data on seaward limit of profile change. J. Waterw. Port C. 111 (3), 598-602. https://doi.org/ 10.1061/(ASCE)0733-950X(1985)111:3(598)
  • 3. Cerkowniak, G.R., Ostrowski, R., Stella, M., 2015a. Depth of closure in the multi-bar non-tidal nearshore zone of the Baltic Sea: Lubiatowo (Poland) case study. Bull. Marit. Inst. Gdańsk 30 (1), 180-188. http://doi.org/10.5604/12307424.1185577.
  • 4. Cerkowniak, G.R., Ostrowski, R., Stella, M., 2015b. Wave-Induced Sediment Motion Beyond the Surf Zone: Case Study of Lubiatowo (Poland). Arch. Hydro-Eng. Environ. Mech. 62 (1—2), 27- 39. https://doi.org/10.1515/heem-2015-0017
  • 5. Cerkowniak, G.R., Ostrowski, R., Pruszak, Z., 2017. Application of Dean’s curve to the investigation of the long-term evolution of the southern Baltic multi-bar shore profile. Oceanologia 59 (1), 18-27. https://doi.org/10.1016/j.oceano.2016.06.001
  • 6. Dean, R.G., 2002. Beach Nourishment. Theory and Practice. Advanced Series on Ocean Engineering — Volume 18. World Sci. Publ., 399 pp. https://doi.org/10.1142/2160
  • 7. Egan, G., Cowherd, M., Fringer, O., Monismith, S., 2019. Observations of near-bed shear stress in a shallow, wave- and current driven flow. J. Geophys. Res. Oceans 124, 6323-6344. https://doi.org/10.1029/2019JC015165
  • 8. Fredsøe, J., 1984. Turbulent boundary layer in combined wave current motion. J. Hydraul. Eng. 110 (HY8), 1103-1120. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:8(1103) 562 Oceanologia 65 (2023) 556-563
  • 9. Grant, W.D., Madsen, O.S., 1979. Combined wave and current interaction with a rough bottom. J. Geophys. Res. Oceans 84 (C4), 1797-1808. https://doi.org/10.1029/JC084iC04p01797
  • 10. Hallermeier, R.J., 1978. Uses for a calculated limit depth to beach erosion. In: Proceedings of 16th Coastal Engineering Conference, Am. Soc. Civil Eng., 1493-1512. https://doi.org/10.9753/icce.v16.88
  • 11. Hallermeier, R.J., 1981. A profile zonation for seasonal sand beaches from wave climate. Coastal Eng. 4 (3), 253-277. https://doi.org/10.1016/0378-3839(80)90022-8
  • 12. Kemp, P., Simons, R., 1982. The interaction between waves and a turbulent current: Waves propagating with the current. J. Fluid Mech. 116, 227-250. https://doi.org/10.1017/S0022112082000445
  • 13. Krauss, W., 2001. Baltic Sea circulation. Encyclopedia of Ocean Sciences. https://doi.org/10.1006/rwos.2001.0381
  • 14. Lacy, J.R., Rubin, D.M., Ikeda, H., Mokudai, K., Hanes, D.M., 2007. Bed forms created by simulated waves and currents in a large flume. J. Geophys. Res. 112, C10018. https://doi.org/10.1029/2006JC003942
  • 15. Lim, K.Y., Madsen, O.S., 2016. An experimental study on near orthogonal wave-current interaction over smooth and uniform fixed roughness beds. Coastal Eng. 116, 258-274. https://doi.org/10.1016/j.coastaleng.2016.05.005
  • 16. Malarkey, J., Davies, A.G., 1998. Modelling wave-current interactions in rough turbulent bottom boundary layers. Ocean Eng. 25, 119-141. https://doi.org/10.1016/S0029-8018(96)00062-5
  • 17. Meyer, Z., 2009. Modified Logarithmic Tachoida Applied to Sediment Transport in a River. Acta Geophysica 57 (3), 743-759. https:// doi.org/10.2478/s11600-009-0010-0
  • 18. Nielsen, P., 1992. Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering — Vol. 4. World Sci. Publ. 340 pp. https://doi.org/10.1142/1269
  • 19. Nielsen, P., 2009. Coastal and Estuarine Processes. Advanced Series on Ocean Engineering - Vol. 29. World Sci. Publ. 360 pp. https://doi.org/10.1142/7114
  • 20. Ostrowski, R., Schönhofer, J., Szmytkiewicz, P., 2016. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo. Poland. J. Marine Syst. 162, 89-97. https://doi.org/10.1016/j.jmarsys.2015.10. 006
  • 21. Ostrowski, R., Stella, M., 2020. Potential dynamics of non-tidal sea bed in remote foreshore under waves and currents. Ocean Eng. 207, 107398. https://doi.org/10.1016/j.oceaneng.2020.107398
  • 22. Ostrowski, R., Stella, M., Szmytkiewicz, P., Kapiński, J., Marcinkowski, T., 2018. Coastal hydrodynamics beyond the surf zone of the south Baltic Sea. Oceanologia 60 (3), 264-276. https://doi.org/10.1016/j.oceano.2017.11.007
  • 23. Pruszak, Z., Szmytkiewicz, P., Ostrowski, R., Skaja, M., Szmytkiewicz, M., 2008. Shallow-water wave energy dissipation in a multi-bar coastal zone. Oceanologia 50 (1), 43- 58.
  • 24. Rudowski, S., Łeczyński, ´ L., Gajewski, Ł., 2008. Fale piaszczyste na dnie głębokiego przybrzeża i ich rola w kształtowaniu brzegu. Landform Analysis 9, 214-216.
  • 25. Sokolov, A., Chubarenko, B., 2012. Wind Influence on the Formation of Nearshore Currents in the Southern Baltic: Numerical Modelling Results. Arch. Hydro-Eng. Environ. Mech. 59 (1-2), 37-48. https://doi.org/10.2478/v10203-012-0003-3
  • 26. Stella, M., 2021. Morphodynamics of the south Baltic seabed in the remote nearshore zone in the light of field measurements. Mar. Geol. 439, 106546. https://doi.org/10.1016/j. margeo.2021.106546
  • 27. Stella, M., Ostrowski, R., Szmytkiewicz, P., Kapiński, J., Marcinkowski, T., 2019. Driving forces of sandy sediment transport beyond the surf zone. Oceanologia 61 (1), 50-59. https://doi.org/10.1016/j.oceano.2018.06.003
  • 28. Trzeciak, S., 2000. Marine Meteorology with Oceanography. Wydawnictwo Naukowe PWN, 249 pp. (in Polish).
  • 29. Valle-Levinson, A., 2016. Lecture 13. Equations of Motion. http://www.essie.ufl.edu/∼arnoldo/ocp6050/notes_pdf/
  • 30. Wiberg, P.L., 2005. Wave-Current Interaction. In: Schwartz, M.L. (Ed.), Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3880-1_343
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-77500d9a-6d41-4670-a7bb-754045349c1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.