Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Experimental and numerical evaluation of wooden beams reinforced with steel and composite bars
Języki publikacji
Abstrakty
Zastosowanie prętów kompozytowych i stalowych do wzmocnienia w belkach z drewna klejonego warstwowo stanowi skuteczną technikę zbrojenia, która umożliwia redukcję przekrojów elementów konstrukcyjnych. W pracy przedstawiono wyniki eksperymentalne dotyczące zbrojenia w pełnowymiarowych belkach drewnianych o przekroju poprzecznym 82x162 mm i długości 3650 mm. Przeprowadzono również badania numeryczne za pomocą metody elementów skończonych z uwzględnieniem współczynnika zbrojenia, rodzaju zbrojenia, siły niszczącej, odkształceń czy przemieszczeń wykonane w programie ANSYS. Wyniki z badań doświadczalnych dla belek niewzmocnionych porównano z wynikami dla belek zbrojonych, a następnie określono przyrosty nośności, sztywności, wytrzymałości na zginanie i modułu sprężystości, a ponadto omówiono analizę postaci uszkodzeń. Wyniki pokazały średni wzrost nośności dla belek wzmocnionych prętami stalowymi odpowiednio 56,2 i 45,2% dla belek wzmocnionych prętami bazaltowymi, dla współczynnika zbrojenia w obu przypadkach równym 1,2%. W przeprowadzonej analizie numerycznej otrzymano zadowalającą korelację z wynikami doświadczalnymi, otrzymana różnica zawierała się w przedziale od 4,3 do 10,2%.
The use of composite and steel bars for reinforcement in glued laminated timber beams is an effective reinforcement technique that allows reducing the cross-sections of structural elements. The paper presents experimental results for reinforcement in full-size wooden beams with a cross-section of 82x162 mm and a length of 3650 mm. Numerical tests were also carried out using the finite element method, taking into account the reinforcement factor, type of reinforcement, destructive force, deformations or displacements performed in the ANSYS program. The results from experimental tests for unreinforced beams were compared with the results for reinforced beams, and then the increases in load capacity, stiffness, bending strength and modulus of elasticity were determined, and the analysis of damage patterns was discussed. The results showed an average increase in resistance for steel-reinforced beams of 56,2 and 45,2% for basalt-reinforced beams, respectively, for a reinforcement factor of 1,2% in both cases. In the numerical analysis, a satisfactory correlation with the experimental results was obtained, the obtained difference was in the range of 4,3 to 10,2%.
Czasopismo
Rocznik
Tom
Strony
55--59
Opis fizyczny
Bibliogr. 27 poz., il., tab.
Twórcy
autor
- Wydział Budownictwa, Politechnika Śląska
- Katedra Wytrzymałości Materiałów i Analiz Konstrukcji Budowlanych, Politechnika Świętokrzyska
Bibliografia
- [1] Christoforo A. L., Gomes A. F. F., Arroyo F. N., Mascarenhas F. J. R., dos Santos H. F., Topolniak L., Akasaki J. L., Reinforcement of Timber Beams with Steel Bars: Parametric Analysis Using the Finite Element Method. Buildings 12/2022, str. 1036. https://doi.org/10.3390/buildings12071036
- [2] We Y., Zhou M. Q., Chen D. J., Flexural behaviour of glulam bamboo beams reinforced with near-surface mounted steel bars, Materials Research Innovations 2015, 19, S1-98–S1-10
- [3] Fiorelli J., Rempe N., Molina J. C., Dias A. A., Natural Fiber-Reinforced Polymer for Structural Application, In Agricultural Biomass Based Potential Materials, Springer: Cham, Switzerland, 2015, str. 435-449
- [4] Allam S. M., Shoukry M. S., Rashad G. E., Hassan A. S., Evaluation of tension stiffening effect on the crack width calculation of flexural RC members, Alexandria Engineering Journal 52, 2013, str. 163-173
- [5] Yang H., Liu W., Lu W., Zhu S., Geng Q., Flexural behavior of FRP and steel reinforced glulam beams: Experimental and theoretical evaluation, Construction and Building Materials 106, 2016, str. 550-563
- [6] Vecchí C., Colajanni S., Deletis R., Catanese A., Iudicello S., Reinforced glulam: An innovative building technology, International Journal for Housing Science its Applications, 32, 2008, str. 207-221
- [7] Wdowiak A., Brol J., Effectiveness of Reinforcing Bent Non-Uniform Pre-Stressed Glulam Beams with Basalt Fibre Reinforced Polymers Rods, Materials 12/2019, str. 3141
- [8] Brol J., Wdowiak-Postulak A., Old Timber Reinforcement with FRPs, Materials 12/2019, str. 4197
- [9] Wdowiak-Postulak A., Basalt Fibre Reinforcement of Bent Heterogeneous Glued Laminated Beams, Materials 14, 2020, str. 51
- [10] Wdowiak-Postulak, A. Natural Fibre as Reinforcement for Vintage Wood. Materials 2020, 13, str. 4799
- [11] Wdowiak-Postulak A., Numerical, theoretical and experimental models of the static performance of timber beams reinforced with steel, basalt and glass pre-stressed bars, Composite Structures 305, 2023, str. 116479
- [12] Wdowiak-Postulak A., Wieruszewski M., Bahleda F., Prokop J., Brol J., Fibre-Reinforced Polymers and Steel for the Reinforcement of Wooden Elements – Experimental and Numerical Analysis, Polymers 15, 2023, str. 2062, https://doi.org/10.3390/polym15092062
- [13] Al-deen S., Ranzi G., Vrcelj Z., Shrinkage effects on the flexural stiffness of composite beams with solid concrete slabs: An experimental stud,. Engineering Structures 33(4)2011, str. 1302-1315, DOI 10.1016/j.engstruct.2011.01.007
- [14] Al-dee, S., Ranzi G., Vrcelj Z. (). Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck. Journal of Constructional Steel Research Engineering Structures 67(10)2011, str. 1658-1676, DOI 10.1016/j.jcsr.2011.04.010
- [15] Zhao X. B., Zhang F. L., Xue J. Y., Ma L. L., Shaking table tests on seismic behavior of ancient timber structure reinforced with CFRP sheet, Engineering Structures, 197, 2019, str. 109405.1-109405.16, DOI 10.1016/j.engstruct.2019.10940
- [16] Ghanbari-Ghazijahani T., Russo T., Valipour H. R., Lightweight timber I-beams reinforced by composite materials, Composite Structures 233, 2019, str. 111579
- [17] Raftery G. M., Kelly F., Basalt FRP rods for reinforcement and repair of timber, Composites Part B Engineering, 70, 2015, str. 9-19
- [18] Luca V., Marano C., Prestressed glulam timbers reinforced with steel bars, Construction and Building Materials, 30, 2012, str. 206-217
- [19] Soriano J., Pellis B. P., Mascia N. T., Mechanical performance of glued-laminated timber beams symmetrically reinforced with steel bars, Composite Structures 150, 2016, str. 200-207
- [20] McConnell E., McPolin D., Taylor S., Post-tensioning of glulam timber with steel tendons, Construction and Building Materials, 73, 2014, str. 426-433
- [21] Donadon B. F., Mascia N. T., Vilela R., Trautwein L. M., Experimental investigation of glued-laminated timber beams with Vectran-FRP reinforcement, Engineering Structures 202, 2019, str. 109818
- [22] Moisture content of a piece of sawn timber – Part 2: Determination of moisture content using an electrical resistance moisture meter; PN EN 13183-2:2002; Polish Standards Institute: Warsaw, Poland, 2004
- [23] Standard Test Method for Tensile Properties of Polymer Matrix Composite Material, ASTM D3039, ASTM: West Conshohocken, PA, USA, 2014
- [24] https://www.google.com/search?client=firefox-b-d&q=S%26P+Resin+55+HP+
- [25] Standard Test Method for Compressive Properties of Rigid Plastics; ASTM D695, ASTM: West Conshohocken, PA, USA, 2014
- [26] Standard Test Method for Tensile Properties of Plastics, ASTM D638; ASTM: West Conshohocken, PA, USA, 2014
- [27] PN-EN 408+A1:2012, Timber Structures – Structural Timber and Glued Laminated Timber – Determination of Some Physical and Mechanical Properties, Polish Committee for Standardization: Warsaw, Poland, 2012
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-774e19c5-cff4-4f40-af9c-acacac995955