PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mobile gas chromatographs coupled with mass and ion mobility spectrometers and their applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chemical analysis of different materials at the place where analytes are present (on-site analysis) has several advantages in comparison to analysis of these materials after delivering the samples to laboratory. Mobile devices, possessing expected properties in terms of using energy, mass and volume are needed for such analyses. The obtained results should be comparable to those obtained with the stationary instruments. Mass and ion mobility spectrometers are examples of the instruments fulfilling these requirements. At the beginning, the article describes the developments in combining of mass and ion mobility spectrometers (MS, IMS) with miniature gas chromatographs (GC). Both systems are used for analyses in the field, mainly for determination of environmental pollutions. They are used not only for analysis of typical chemicals present in different environmental compartments (in air, water and soil samples) but also for analysis of explosives, drugs and chemical warfare agents when fast results are needed. Particularly noteworthy is their applications in space exploration on the International Space Station. The selected examples of applications of miniaturised GC-MS and GC-IMS devices are presented in the second part of this mini review.
Rocznik
Strony
29--37
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • Institute of Chemistry, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warszawa 46, Poland
  • Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Gałuszka A, Migaszewski ZM, Namieśnik J. Moving your laboratory to the field - advantages and limitations of the use of field-portable instruments in environmental sample analysis. Environ Res. 2015;140:593-603. DOI: 10.1016/j.envres.2015.05.017.
  • [2] Witkiewicz Z, Wardencki W. Transportable, portable and micro gas chromatographs. Anal Chem: Indian J. 2019;19:1-12. DOI:10.37532/0974-7419.2019.19(1).142.
  • [3] Qu H, Duan X. Recent advances in micro detectors for micro gas chromatography. Sci China Mater. 2019;62(5):611-23. DOI: 10.1007/s40843-018-9389-0.
  • [4] Makas AL, Troshkov ML. Field gas chromatography-mass spectrometry for fast analysis. J Chrom B. 2004;800:55-61. DOI: 10.1016/j.jasms.2008.06.0.
  • [5] Li L, Chen T, Ren Y, Hendricks PI, Cooks RG, Quyang Z. Mini 12, miniature mass spectrometer for clinical and other applications - Introduction and characterization. Anal Chem. 2014;86:2909-16. DOI: 10.1021/ac403766c.
  • [6] Snyder D, Pulliam C, Quyang Z, Cooks R. Miniature and fieldable mass spectrometers. Anal Chem. 2016;88(1):2-29. DOI: 10.1021/acs.analchem.5b03070.
  • [7] Sanders NL, Kothari S, Huang G, Salazar G, Cooks RG, Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer. Anal Chem. 2010; 82(12):5313-6. DOI: 10.1021/ac1008157.
  • [8] McBride EM, Mach PM, Dhummakupt ES, Dowling S, Carmay DO, Demond PS, et al. Paper spray ionization: Applications and perspectives. Trends Anal Chem. 2019;118:722-30. DOI: 10.1016/j.trac.2019.06.028.
  • [9] Xiao Y, Deng J, Yao Y, Fang L, Yang Y, Luan T. Recent advances of ambient mass spectrometry imaging for biological tissues: A review. Anal Chim Acta. 2020;1117:74-88. DOI: 10.1016/j.aca.2020.01.052.
  • [10] Lammert SA, Rockwood AA, Wang M, Lee M, Lee ED, Tolley SE, et al. Miniature toroidal frequency ion trap mass analyzer. J. Am Soc Mass Spectrom. 2006;17:916-22. DOI: 10.1016/j.jasms.2006.02.009.
  • [11] Contreras JA, Murray JA, Tolley SE, Oliphant JL, Tolley HD, Lammert SA, et al. Hand-portable gas chromatograph-toroidal ion trap mass spectrometer for detection of hazardous compounds. J Am Soc Mass Spectrom. 2008;19:1425-34. DOI: 10.1016/j.jasms.2008.06.022.
  • [12] Guo Q, Gao L, Zhai Y, Xu W. Recent developments of miniature ion trap mass spectrometers. Chin Chem. Letters. 2018;29:1578-84. DOI: 10.1016/j.cclet.2017.12.009.
  • [13] Quyang Z, Cooks RG. Miniature mass spectrometer. Ann Rev Anal Chem. 2009;2:187-214. DOI: 10.1146/annurev-anchem-060908-155229.
  • [14] Meng X, Zhang X, Zhai Y, Xu W. Mini 2000: a robust miniature mass spectrometer with continuous atmospheric pressure interface. Instruments. 2018;2. DOI: 2,210.3390/instruments2010002.
  • [15] Hamilton SE, Mattrey F, Bu X, Murray D, McCullough B, Welch CJ. Use of miniature mass spectrometer to support pharmaceutical process chemistry. Org Process Res Develop. 2014;18:103-8. DOI: 1021/op400253x.
  • [16] Mielczarek P, Silbering J, Smoluch M. Miniaturization in mass spectrometry. Mass Spectrom Rev. 2020;39(5-6):453-70. DOI: 10.1002/mas.21614.
  • [17] Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia J. Review on ion mobility spectrometry. Part 1: Current instrumentation. Analyst. 2015;140:1376-90. DOI: 10.1039/c4an01100g.
  • [18] Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia J. Review on ion mobility spectrometry. Part 2: Hyphenated methods and effects of experimental parameters. Analyst. 2015;140:1391-410. DOI: 10.1039/c4an01100g. Analyst. 2015; 140:1391-1410. DOI: 10.1039/c4an01101e.
  • [19] Eiceman GA, Karpas Z, Hill HH Jr. Ion Mobility Spectrometry. 3rd ed. Boca Raton: Taylor Francis; 2013. ISBN: 9781439859971.
  • [20] Puton J, Namieśnik J. Ion mobility spectrometry. Trends Anal Chem. 2016;85:10-20. DOI: 10.1016/j.trac.2016.06.002.
  • [21] Satoh T, Kishi TS, Nagashima H, Tachikawa M, Kanamori-Kataoka M, Nakagawa T, et al. Ion mobility spectrometric analysis of vapours chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation. Anal Chim Acta. 2015;865:39-52. DOI: 10.1016/j.aca.2015.02.004.
  • [22] Kanu AB, Hill HH Jr. Ion mobility for gas chromatography. J Chromatogr A. 2008;1177;12-27. DOI: 10.1016/j.chroma.2007.10.110.
  • [23] Ahrens A, Hitzemann, Zimmermann S. Miniaturized high-performance drift-tube ion mobility spectrometer. J Ion Mobil Spectrom. 2019;22:77-83. DOI: 10.1007/s12127-019-00248-w.
  • [24] Schneider BB, Nazarov EG, Londry F, Vouros FP, Covey TR. Differential mobility spectrometry/massspectrometry, history, theory, design optimization, simulations, and applications. Mass Spectrom Rev. 2015;34:687-737. DOI: 10.1002/mas.21453.
  • [25] Cohen MJ, Karasek FW. Plasma chromatography – a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci. 1970;8(6):330-7. DOI: 10.1093/chromsci/8.6.330.
  • [26] Aguilera-Herradora E, Cardenasa S, Ruzsanyi V, Sielemann S, Varcalcel M. Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast chromatography multi-capillary columns. J Chromatogr A. 2008;1214:143-50. DOI: 10.1016/j.chroma.2008.10.050.
  • [27] Palmer PT, Limero TF. J Am Soc Mass Spectrom. 2001;12:656-76. DOI: 10.1016/S1044-0305(01)00249-5.
  • [28] Grabka M, Żukowski P, Witkiewicz Z. Zastosowanie chromatografii gazowej w pozaziemskich misjach badawczych (Application of gas chromatography in extraterrestrial research missions). Aparat Bad Dydakt. 2012;17:69-77.
  • [29] Hofer L, Wurz P, Buch A, Cabane M, Cool P, Coscia D, et al. Planet Space Sci. 2015;111:126-33. DOI: 10.1016/j.pss.2015.03.027.
  • [30] Gorder KA, Dettenmaier ME. Groundwat Monit Remed. 2011;31:113-9. DOI: 10.1111/j.1745-6592.2011.01357.x.
  • [31] Eckenrode BA. Environmental and forensic application of field-portable GC-MS: An overview. J Am Soc Mass Spectrom. 2001;12(6):683-93. DOI: 10.1016/S1044-0305(01)00251-3.
  • [32] Ochiai N, Sasamoto K. Screening of pesticide residues in water by sequential stir bar sorptive extraction-thermal desorption with GC/MSD. Appl Note Agilent Technol. 2010.
  • [33] Leary PE, Kammrath BW, Lattman KJ, Beals GL. Deploying portable gas chromatography-mass spectrometry to military users for the identification of toxic chemical agents in theatre. Appl Spectrosc. 2019;73:841-58. DOI: 10.1177/0003702819849499.
  • [34] Sekiguchi H, Matsushita K, Yamashiro S, Sano Y, Seto Y, Okuda T, et al. On-site determination of nerve and mustard gases using a field-portable gas chromatograph-mass spectrometer. Forensic Toxic. 2006;24:17-22. DOI: 10.1007/s11419-006-0004-4.
  • [35] Bednar AJ, Russell AL, Hayes CA, Jones WT, Tackett Splichal DE, Georgian T, et al. Chemosphere. 2012;87:894-901. DOI: 10.1016/j.chemosphere.2012.01.042.
  • [36] Beck J, Porter N, Cook D, Gee WS, Griffith CM, Rands AD, et al. In-field volatile analysis employing a hand-held portable gc-ms: emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem Anal. 2015;26:395-403. DOI: 10.1002/pca.2573.
  • [37] Limero T, Cheng P, Reese E, Trowbridge J. Results of the air quality monitor’s experiment to measure volatile organic compounds aboard the International Space Station. 40th Int Conf Environmental Systems, Barcelona, September 2010. URI: hdl.handle.net/2346/72986.
  • [38] Limero T, Wallace W, James JT. Operational validation of the air quality monitor on the International Space Station. 44th Int Conf Environmental Systems, Tucson. July 2014. URI: hdl.handle.net/2346/72986.
  • [39] Limero T, Nazarov EG, Menlyadiev M, Eiceman GA. Analyst. 2015;140:922-30. DOI: 10.1039/C4AN01800A.
  • [40] Caygill JS, Davis F, Higson SP. Current trends in explosive detection techniques. Talanta. 2012;88:80-8. DOI: 10.1016/j.talanta.2011.11.043.
  • [41] Cook GW, LaPuma PT, Hook GL, Eckenrode BA. J Forensic Sci. 2010;55:1582-91. DOI: 10.1111/j.1556-4029.2010.01522.x.
  • [42] Kwan C, Snyder AP, Erickson RP, Maswadeh PA, Ayhan B, Jensen JL, et al. IEEE Sensors J. 2010;10:451-60.
  • [43] Erickson RP, Tripathi A, Maswadeh WM, Snyder AP, Smith PA. Closed tube introduction for gas chromatography-ion mobility spectrometry analysis of water contaminated with a chemical warfare agent surrogate compound. Anal Chim Acta. 2006;556:455-61. DOI: 10.1016/j.aca.2005.09.031.
  • [44] Cavanna D, Zanardi S, Dall’Asta C, Suman M. Food Chem. 2019;15:691-6. DOI: 10.1016/j.foodchem.2018.07.204.
  • [45] Reyes-Garces N, Gomez-Rios GA, Souza Silwa EA, Pawliszyn J. Coupling needle-trap devices with gas chromatography-ion mobility spectrometry detection as a simple approach for on-site quantitative analysis. J Chromatogr A. 2013;1300:193-8. DOI: 10.1016/j.chroma.2013.05.042.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-774b77d9-c1e6-4df2-9d53-5a8f83a200b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.